【題目】已知拋物線:.
(1)若直線經(jīng)過拋物線的焦點,求拋物線的準線方程;
(2)若斜率為-1的直線經(jīng)過拋物線的焦點,且與拋物線交于,兩點,當(dāng)時,求拋物線的方程.
【答案】(1) .(2) .
【解析】
(1)由拋物線的焦點的位置,可以判斷出直線與橫軸的交點坐標(biāo)就是拋物線的焦點,這樣可能直接寫出拋物線的準線方程;
(2)寫出斜率為-1經(jīng)過拋物線的焦點的直線的方程,與拋物線方程聯(lián)立,根據(jù)拋物線的定義和根與系數(shù)的關(guān)系可以求出,結(jié)合已知,求出的值,寫出拋物線的方程.
(1)∵直線經(jīng)過拋物線的焦點,
∴拋物線的焦點坐標(biāo)為,
∴拋物線的準線方程為.
(2)設(shè)過拋物線的焦點且斜率為-1的直線方程為,且直線與交于,,
由化簡得,
∴.
∵,解得,
∴拋物線的方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點.
(Ⅰ)證明: BC1//平面A1CD;
(Ⅱ)設(shè)AA1= AC=CB=2,AB=2,求三棱錐C一A1DE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程為ρ= ,直線l的參數(shù)方程為(t為參數(shù),0≤α<π).
(1)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線C的形狀;
(2)若直線l經(jīng)過點(1,0),求直線l被曲線C截得的線段AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:.
(1)若直線經(jīng)過拋物線的焦點,求拋物線的準線方程;
(2)若斜率為-1的直線經(jīng)過拋物線的焦點,且與拋物線交于,兩點,當(dāng)時,求拋物線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
用反證法證明命題“設(shè)a,b,c為實數(shù),且,,則,,”時,要給出的假設(shè)是:a,b,c都不是正數(shù);
若函數(shù)在處取得極大值,則或;
用數(shù)學(xué)歸納法證明,在驗證成立時,不等式的左邊是;
數(shù)列的前n項和,則是數(shù)列為等比數(shù)列的充要條件;
上述命題中,所有正確命題的序號為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).已知曲線在點處的切線與直線垂直.
(1)求的值;
(2)求函數(shù)的極值點;
(3)若對于任意,總存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《數(shù)書九章》中對已知三角形三邊長求三角形的面積的求法填補了我國傳統(tǒng)數(shù)學(xué)的一個空白,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實.一為從隅,開平方得積.”若把以上這段文字寫成公式,即.已知滿足 .且,則用以上給出的公式可求得的面積為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】即將于年夏季畢業(yè)的某大學(xué)生準備到貴州非私營單位求職,為了了解工資待遇情況,他在貴州省統(tǒng)計局的官網(wǎng)上,查詢到年到年非私營單位在崗職工的年平均工資近似值(單位:萬元),如下表:
年份 | ||||||||||
序號 | ||||||||||
年平均工資 |
(1)請根據(jù)上表的數(shù)據(jù),利用線性回歸模型擬合思想,求關(guān)于的線性回歸方程(,的計算結(jié)果根據(jù)四舍五入精確到小數(shù)點后第二位);
(2)如果畢業(yè)生對年平均工資的期望值為8.5萬元,請利用(1)的結(jié)論,預(yù)測年的非私營單位在崗職工的年平均工資(單位:萬元。計算結(jié)果根據(jù)四舍五入精確到小數(shù)點后第二位),并判斷年平均工資能否達到他的期望.
參考數(shù)據(jù):,,
附:對于一組具有線性相關(guān)的數(shù)據(jù):,,,,
其回歸直線的斜率和截距的最小二乘法估計分別為
,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com