函數(shù)f(x)=x2-x+1,x∈[0,
3
2
]的值域是
 
考點(diǎn):二次函數(shù)在閉區(qū)間上的最值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)f(x)=(x-
1
2
)
2
+
3
4
,x∈[0,
3
2
],再利用二次函數(shù)的性質(zhì)求得它的值域.
解答: 解:由于f(x)=x2-x+1=(x-
1
2
)
2
+
3
4
,x∈[0,
3
2
],
故當(dāng)x=
1
2
時(shí),函數(shù)f(x)取得最小值為
3
4
,當(dāng)x=
3
2
時(shí),函數(shù)f(x)取得最大值為
7
4
,
故函數(shù)f(x)的值域?yàn)閇
3
4
7
4
],
故答案為:[
3
4
,
7
4
].
點(diǎn)評(píng):本題主要考查求二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2sin(-210°)的值為(  )
A、-
1
2
B、1
C、
1
2
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,曲線Γ由曲線C1
x2
a2
+
y2
b2
=1(a>b>0,y≤0)
和曲線C2
x2
a2
-
y2
b2
=1(y>0)
組成,其中點(diǎn)F1,F(xiàn)2為曲線C1所在圓錐曲線的焦點(diǎn),點(diǎn)F3,F(xiàn)4為曲線C2所在圓錐曲線的焦點(diǎn),
(1)若F2(2,0),F(xiàn)3(-6,0),求曲線Γ的方程;
(2)如圖,作直線l平行于曲線C2的漸近線,交曲線C1于點(diǎn)A、B,求證:弦AB的中點(diǎn)M必在曲線C2的另一條漸近線上;
(3)對(duì)于(1)中的曲線Γ,若直線l1過(guò)點(diǎn)F4交曲線C1于點(diǎn)C、D,求△CDF1面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2014年5月31日,江西宜春的高三考生柳艷兵與易征勇在客運(yùn)班車上與持刀歹徒英勇搏斗的事跡.事后不久,江西某市迅速在全市高中開(kāi)展了“向柳艷兵與易征勇同學(xué)學(xué)習(xí)”的宣傳活動(dòng),該市某高中就這一宣傳活動(dòng)在該校師生中抽取了120人進(jìn)行問(wèn)卷調(diào)查,調(diào)查結(jié)果如下:
 所持態(tài)度 很有必要 有必要 意義不大
 人數(shù)(單位:人) 60 40 20
(1)若從這120人中按照分層抽樣的方法隨機(jī)抽取6人進(jìn)行座談,再?gòu)倪@6人中隨機(jī)抽取3人作進(jìn)一步調(diào)查,求這3人中至少有1人態(tài)度為“很有必要”的概率;
(2)現(xiàn)從(1)所抽取的6人的問(wèn)卷中每次抽取1份,且不重復(fù)抽取,直至確定出所有態(tài)度為“很有必要”的問(wèn)卷為止,記所要抽取的次數(shù)為X,求X的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x-
π
12
,求f(
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-
1
x
+alnx-1在其定義域上為增函數(shù)
(1)求a的取值范圍;
(2)當(dāng)a≥-2時(shí),試給出零點(diǎn)所在的一個(gè)閉區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

|z+
1
z
|=1時(shí),則|z|的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中an+1-2an=0,若a3+2是a2,a4的等差中項(xiàng),數(shù)列{bn}的前n項(xiàng)和為Sn,且滿足bn=2nlog
1
2
an,則使Sn+n•2n+1=50成立的正整數(shù)n等于(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0<α<
π
2
π
2
<β<π
,且cosα=
3
5
,tan(α-β)=-1,求cosβ+tanα的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案