15.若m,n是兩條不同的直線,α是一個平面,則下列說法正確的是( 。
A.若m∥α,n∥α,則m∥nB.若m⊥α,n⊥α,則m∥nC.若m⊥n,n?α,則m⊥αD.若m∥n,m∥α,則n∥α

分析 在A中,m與n相交、平行或異面;在B中,由線面垂直的性質(zhì)定理得m∥n;在C中,m與α相交、平行或m?α;在D中,n∥α或n?α.

解答 解:由m,n是兩條不同的直線,α是一個平面,知:
在A中,若m∥α,n∥α,則m與n相交、平行或異面,故A錯誤;
在B中,若m⊥α,n⊥α,則由線面垂直的性質(zhì)定理得m∥n,故B正確;
在C中,若m⊥n,n?α,則m與α相交、平行或m?α,故C正確;
在D中,若m∥n,m∥α,則n∥α或n?α,故D錯誤.
故選:B.

點評 本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系,考查推理論證能力、運算求解能力、空間想象能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想、函數(shù)與方程思想是,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,$AB=AC=\frac{1}{2}A{A_1}$,AB⊥AC,D是棱BB1的中點.
(Ⅰ)證明:平面A1DC⊥平面ADC;
(Ⅱ)求平面A1DC與平面ABC所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設復數(shù)z滿足(1+i)z=-2i,i為虛數(shù)單位,則z=(  )
A.-1+iB.-1-iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知橢圓C:$\frac{x^2}{4}+\frac{y^2}{3}$=1的左頂點、上頂點、右焦點分別為A,B,F(xiàn),則$\overrightarrow{AB}•\overrightarrow{AF}$=6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知復數(shù)z滿足(2+i)z=2-i(i為虛數(shù)單位),則z=( 。
A.3+4iB.3-4iC.$\frac{3}{5}$+$\frac{4}{5}$iD.$\frac{3}{5}$-$\frac{4}{5}$i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知數(shù)列{an}的通項公式為${a_n}=\left\{\begin{array}{l}{n^2},n為偶數(shù)\\-{n^2},n為奇數(shù)\end{array}\right.$,且bn=an+an+1,則b1+b2+…b2017=2019.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知各項均為正數(shù)的等差數(shù)列{an}滿足:a4=2a2,且a1,4,a4成等比數(shù)列,設{an}的前n項和為Sn
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列$\left\{{\frac{S_n}{{n•{2^n}}}}\right\}$的前n項和為Tn,求證:Tn<3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,四棱錐P-ABCD的底面ABCD為平行四邊形,平面PAB⊥平面ABCD,PB=PC,∠ABC=45°,點E是線段PA上靠近點A的三等分點.
(Ⅰ)求證:AB⊥PC;
(Ⅱ)若△PAB是邊長為2的等邊三角形,求直線DE與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.為了研究某種微生物的生長規(guī)律,需要了解環(huán)境溫度x(°C)對該微生物的活性指標y的影響,某實驗小組設計了一組實驗,并得到如表的實驗數(shù)據(jù):
環(huán)境溫度x(°C)1234567
活性指標y28272624252322
(Ⅰ)由表中數(shù)據(jù)判斷y關于x的關系較符合$\widehaty=\widehatbx+\widehata$還是$\widehaty={2^{\widehatbx+\widehata}}$,并求y關于x的回歸方程($\widehata$,$\widehatb$取整數(shù));
(Ⅱ)根據(jù)(Ⅰ)中的結(jié)果分析:若要求該種微生物的活性指標不能低于26.3,則環(huán)境溫度應不得高于多少°C?
附:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

同步練習冊答案