已知f(x)是定義域在R上的奇函數(shù),當(dāng)x∈[0,+∞)時(shí),f(x)=x2+2x,則f(-1)=
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由奇函數(shù)的性質(zhì)得f(-1)=-f(1),利用已知的解析式即可求值.
解答: 解:因?yàn)閒(x)是定義域在R上的奇函數(shù),
所以f(-1)=-f(1),
又當(dāng)x∈[0,+∞)時(shí),f(x)=x2+2x,
則f(1)=1+2=3,即f(-1)=-3,
故答案為:-3.
點(diǎn)評(píng):本題考查利用函數(shù)的奇偶性求函數(shù)值,以及轉(zhuǎn)化思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b,c都是實(shí)數(shù).已知命題p:若a>b,則a+c>b+c;命題q:若a>b>0,則ac>bc.則下列命題中為真命題的是( 。
A、(?p)∨q
B、p∧q
C、(?p)∧(?q)
D、(?p)∨(?q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:若數(shù)列{an}對(duì)任意的正整數(shù)n,都有|an+1|+|an|=d(d為常數(shù)),則稱{an}為“絕對(duì)和數(shù)列”,d叫做“絕對(duì)公和”,已知“絕對(duì)和數(shù)列”{an}中,a1=2,“絕對(duì)公和”d=2,則其前2013項(xiàng)和S2013的最小值為(  )
A、-2008
B、-2010
C、-2012
D、-2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-1-xlnx,(x>0)
(Ⅰ)求函數(shù)f(x)的最大值
(Ⅱ)設(shè)g(x)=
lnx
x-1
(x>1),試分析函數(shù)g(x)的單調(diào)性
(Ⅲ)利用(Ⅱ)的結(jié)論,證明:當(dāng)n>m>0時(shí),(1+n)m<(1+m)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將一個(gè)等差數(shù)列依次寫出,其中ami表示第m行第i個(gè)數(shù),i=1,2,3,…,m.那么第m行的m個(gè)數(shù)之和是
 

第1行:2;
第2行:5,8;
第3行:11,14,17;
第4行:20,23,26,29;

第m行:am1,am2,am3,…,amm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一人從點(diǎn)A出發(fā),向東走500米到達(dá)點(diǎn)B,接著向北偏東60°走300米到達(dá)點(diǎn)C,然后再向北偏東45°走100米到達(dá)點(diǎn)D.試選擇適當(dāng)?shù)谋壤,用向量表示這個(gè)人的位移.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=1,且點(diǎn)A(an,an+1)(n∈N*)在直線y=x+2上,數(shù)列{bn}的前n項(xiàng)和為{Sn},且Sn=2bn-2(n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求b1,b2的值,并求數(shù)列{bn}的通項(xiàng)公式;
(Ⅲ)設(shè)cn=bnsin2
2
-ancos2
2
(n∈N*),求數(shù)列{cn}的前8項(xiàng)和T8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“若可導(dǎo)函數(shù)f(x)是奇函數(shù),則f′(x)是偶函數(shù)”的否命題是( 。
A、若可導(dǎo)函數(shù)f(x)是偶函數(shù),則f′(x)是奇函數(shù)
B、若可導(dǎo)函數(shù)f(x)是奇函數(shù),則f′(x)是奇函數(shù)
C、若可導(dǎo)函數(shù)f(x)是奇函數(shù),則f′(x)不是偶函數(shù)
D、若可導(dǎo)函數(shù)f(x)不是奇函數(shù),則f′(x)不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓的方程x2+(y-1)2=4.過(guò)點(diǎn)A(0,3)作圓的割線交圓于點(diǎn)P,求線段AP中點(diǎn)的軌跡.

查看答案和解析>>

同步練習(xí)冊(cè)答案