A. | $\frac{π}{2}$ | B. | 2 | C. | $\frac{2}{π}$ | D. | π |
分析 由于a>1時,原函數(shù)在[2,π]為單調(diào)增函數(shù),在根據(jù)最大值與最小值的差為1,即可列出關(guān)于a的方程即可求解即得.
解答 解:當(dāng)a>1 時,f(x)=logax 在(0,+∞)上為增函數(shù),
∴在[2,π]上函數(shù)f(x)的最小值,最大值分別為:
f(x)min=f(2),f(x)max=f(π)
∵在區(qū)間[2,π]上的最大值比最小值大1,
∴f(π)-f(2)=logaπ-loga2=1
解得a=$\frac{π}{2}$,
故選:A.
點評 本題主要考查了對數(shù)函數(shù)的單調(diào)性,同時考查了運算求解的能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1<a<3 | B. | 1<a≤3 | C. | $\frac{1}{2}$<a<5 | D. | $\frac{1}{2}$<a≤5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | b>a>c | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | 2π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{3}$,$\frac{2}{3}$) | B. | [$\frac{1}{3}$,$\frac{2}{3}$) | C. | ($\frac{1}{2}$,$\frac{2}{3}$) | D. | [$\frac{1}{2}$,$\frac{2}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com