(本小題滿分15分) 已知函數(shù)f(x)=-1+2sinxcosx+2cos2x.
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)求f(x)圖象上與原點最近的對稱中心的坐標;
(3)若角α,β的終邊不共線,且f(α)=f(β),求tan(α+β)的值.
(1) [kπ+,kπ+](k∈Z) ;(2) (-,0) ;(3) .

試題分析:f(x)=sin2x+cos2x=2sin(2x+),
(1)由2kπ+≤2x+≤2kπ+ (k∈Z)
得kπ+≤x≤kπ+ (k∈Z),
∴f(x)的單調(diào)遞減區(qū)間為[kπ+,kπ+](k∈Z)
(2)由sin(2x+)=0得2x+=kπ(k∈Z),
即x= (k∈Z),
∴f(x)圖象上與原點最近的對稱中心的坐標是(-,0).
(3)由f(α)=f(β)得:
2sin(2α+)=2sin(2β+),
又∵角α與β的終邊不共線,
∴(2α+)+(2β+)=2kπ+π(k∈Z),
即α+β=kπ+ (k∈Z),∴tan(α+β)=.
點評:求函數(shù)的單調(diào)區(qū)間,一定要注意的正負,此為易錯點,也是?键c。此題屬于基礎題型。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
定義在上的偶函數(shù),已知當時的解析式
(Ⅰ)寫出上的解析式;
(Ⅱ)求上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)在R上是單調(diào)函數(shù),且滿足對任意,都有,若則的值是(    )
A.3B.7 C.9D.12

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是偶函數(shù),它在上是減函數(shù),且,則x的取值范圍是(    )
A.(,1)B.(0,)(1,)
C.(,10)D.(0,1)(10,)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,則之間的大小關系是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設偶函數(shù)上是增函數(shù),則
大小關系是(    )
A.B.
C.D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

的大小關系是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)已知在定義域上是奇函數(shù),且在上是減函數(shù),圖像如圖所示.
(1)化簡:
(2)畫出函數(shù)上的圖像;
(3)證明:上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設奇函數(shù)上為增函數(shù),且,則不等式解集為(     )
A.B.C.D.

查看答案和解析>>

同步練習冊答案