設(shè)定義在R上的函數(shù)f(x)=
1
|x-2|
(x≠2)
1(x=2)
,若關(guān)于x的方程f2(x)+bf(x)+c=0有3個(gè)不同的實(shí)數(shù)解x1,x2,x3,則x1+x2+x3等于( 。
A、3B、6C、-b-1D、c
考點(diǎn):分段函數(shù)的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先畫出f(x)的圖象,觀察圖形可知若關(guān)于x的方程f2(x)+af(x)+b=3有三個(gè)不同實(shí)數(shù)解滿足的條件,然后圖象對(duì)稱性求出三個(gè)根即可.
解答: 解:分段函數(shù)的圖象如圖所示:
由圖可知,只有當(dāng)f(x)=1時(shí),它有三個(gè)根.
1
|x-2|
=1
,即|x-2|=1,
解得x=1,x=2或x=3.
∴關(guān)于x的方程f2(x)+af(x)+b=0有且只有3個(gè)不同實(shí)數(shù)解,不妨設(shè)x1<x2<x3,
解分別是1,2,3,即x1=1,x2=2,x3=3,
∴x1+x2+x3=1+2+3=6,
故選:B
點(diǎn)評(píng):本題主要考查了函數(shù)與方程的綜合運(yùn)用,以及函數(shù)的圖象與方程之間的關(guān)系,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

k
0
(2x-3x2)dx=0,則k=( 。
A、1B、0
C、0或1D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)m2-2m-3+(m2-3m-4)i為純虛數(shù)(i為虛數(shù)單位),則實(shí)數(shù)m=(  )
A、m=-1
B、m=3
C、m=-1或 m=3
D、m=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判定下列命題
①第一象限的角為銳角
②f(x)=xcosx為奇函數(shù)
AB
-
AC
=
CB

④(
a
b
)•
c
=
a
•(
b
c

正確的為( 。
A、①②B、①③C、②③D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x∈R|0<x<1},B={x∈R|(2x-1)(x+1)≤0},則(∁RA)∩B(  )
A、[0,
1
2
]
B、[-1,0]
C、[
1
2
,1]
D、(-∞,-1]∪[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
1
3
x3+ax2
+5x+6在區(qū)間[1,3]上單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍為( 。
A、[-
5
,+∞)
B、(-∞,-3]
C、[-3,
5
]
D、(-∞,-3]∪[-
5
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a=sin2,b=cos2,則a,b的大小為( 。
A、a<bB、b<a
C、a=bD、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
AB
=
a
,
AC
=
b
,D為BC的中點(diǎn),則
AD
為( 。
A、
1
2
a
+
1
2
b
B、
1
3
a
+
2
3
b
C、
1
2
a
-
1
2
b
D、
1
3
a
+
2
3
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,
3
cosx),
b
=(cosx,cosx),若函數(shù)f(x)=
a
b

(1)若x∈[0,
π
2
],求f(x)得最小值.
(2)求函數(shù)f(x)的遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案