【答案】
分析:本題考查的知識點是直線與圓方程的應(yīng)用,由已知圓x
2+y
2-4y=0,我們可以將其轉(zhuǎn)化為標(biāo)準(zhǔn)方程的形式,求出圓心坐標(biāo)和半徑,又直線由過原點且傾斜角為60°,得到直線的方程,再結(jié)合半徑、半弦長、弦心距滿足勾股定理,即可求解.
解答:解:將圓x
2+y
2-4y=0的方程可以轉(zhuǎn)化為:
x
2+(y-2)
2=4,
即圓的圓心為A(0,2),半徑為R=2,
∴A到直線ON的距離,即弦心距為1,
∴ON=
,
∴弦長2
,
故選D.
點評:要求圓到割線的距離,即弦心距,我們最常用的性質(zhì)是:半徑、半弦長(BE)、弦心距(OE)構(gòu)成直角三角形,滿足勾股定理,求出半徑和半弦長,代入即可求解.