(本小題滿分14分)已知函數(shù)=,.

(1)求函數(shù)在區(qū)間上的值域;

(2)是否存在實(shí)數(shù),對(duì)任意給定的,在區(qū)間上都存在兩個(gè)不同的,使得成立.若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

(3)給出如下定義:對(duì)于函數(shù)圖象上任意不同的兩點(diǎn),如果對(duì)于函數(shù)圖象上的點(diǎn)(其中總能使得成立,則稱(chēng)函數(shù)具備性質(zhì)“”,試判斷函數(shù)是不是具備性質(zhì)“”,并說(shuō)明理由.

 

【答案】

(1)值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012121810570456101502/SYS201212181057548578533634_DA.files/image001.png"> .(2)滿足條件的不存在. (3)函數(shù)不具備性質(zhì)“”.

【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。

(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012121810570456101502/SYS201212181057548578533634_DA.files/image005.png">,然后分析導(dǎo)數(shù)的正負(fù),然后判定單調(diào)性得到值域。

(2)令,則由(1)可得,原問(wèn)題等價(jià)于:對(duì)任意的上總有兩個(gè)不同的實(shí)根,故不可能是單調(diào)函數(shù),對(duì)于參數(shù)a討論得到結(jié)論。

(3)結(jié)合導(dǎo)數(shù)的幾何意義得到結(jié)論。

(1),當(dāng)時(shí),,時(shí), 

  在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,且,

   的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012121810570456101502/SYS201212181057548578533634_DA.files/image001.png"> .          ………………………….3分

(2)令,則由(1)可得,原問(wèn)題等價(jià)于:對(duì)任意的上總有兩個(gè)不同的實(shí)根,故不可能是單調(diào)函數(shù)  ……5分

   

當(dāng)時(shí), 在區(qū)間上遞減,不合題意 ;

當(dāng)時(shí), ,在區(qū)間上單調(diào)遞增,不合題意;

當(dāng)時(shí), ,在區(qū)間上單調(diào)遞減,不合題意;

當(dāng)時(shí), 在區(qū)間上單調(diào)遞減; 在區(qū)間上單遞增,由上可得,此時(shí)必有的最小值小于等于0且的最大值大于等于1, 而由可得,則.

綜上,滿足條件的不存在.……………………………………………8分

(3)設(shè)函數(shù)具備性質(zhì)“”,即在點(diǎn)處地切線斜率等于,不妨設(shè),則,而在點(diǎn)處的切線斜率為,故有……..10分

,令,則上式化為,

,則由可得上單調(diào)遞增,故,即方程無(wú)解,所以函數(shù)不具備性質(zhì)“”.……..14分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷(xiāo)售價(jià)格及銷(xiāo)售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷(xiāo)售價(jià)格(單位:元)為,第天的銷(xiāo)售量為,已知該商品成本為每件25元.

(Ⅰ)寫(xiě)出銷(xiāo)售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤(rùn);

(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案