分析 使用余弦定理求出各角.
解答 解:∵a:b:c=2:(1+$\sqrt{3}$):$\sqrt{2}$,不妨設a=2k,b=(1+$\sqrt{3}$)k,c=$\sqrt{2}$k,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{4+2\sqrt{3}+2-4}{2\sqrt{2}(1+\sqrt{3})}$=$\frac{\sqrt{2}}{2}$,cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{4+4+2\sqrt{3}-2}{4(1+\sqrt{3})}$=$\frac{\sqrt{3}}{2}$,
∴A=45°,C=30°,∴B=105°.
故答案為:45°,105°,30°.
點評 本題考查了余弦定理,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com