設(shè)(2-x)5=a0+a1x+a2x2…a5x5,那么
a0+a2+a4
a1+a3
的值為
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:由條件利用二項(xiàng)式定理求出得 a0、a1、a2、a3、a4、a5的值,可得要求的式子的值.
解答: 解:由(2-x)5=a0+a1x+a2x2…a5x5,可得 a0=32,a1=-
C
1
5
×16=-80,a2=8
C
2
5
=80,
a3=-4
C
3
5
=-40,a4=2
C
4
5
=10,a5=-1,
a0+a2+a4
a1+a3
=
32+80+10
-80+(-40)
=-
61
60
,
故答案為:-
61
60
點(diǎn)評:本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
sinα
sin
α
2
=
8
5
,求cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面α⊥平面β,直線a∥平面α,則直線a與平面β的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}(n∈N*),其前n項(xiàng)和為Sn,給出下列四個(gè)命題:
①若{an}是等差數(shù)列,則三點(diǎn)(10,
S10
10
)、(100,
S100
100
)、(110,
S110
110
)共線;
②若{an}是等差數(shù)列,且a1=-11,a3+a7=-6,則S1、S2、…、Sn這n個(gè)數(shù)中必然存在一個(gè)最大者;
③若{an}是等比數(shù)列,則Sm、S2m-Sm、S3m-S2m(m∈N*)也是等比數(shù)列;
④若Sn+1=a1+qSn(其中常數(shù)a1q≠0),則{an}是等比數(shù)列;
⑤若等比數(shù)列{an}的公比是q(q是常數(shù)),且a1=1,則數(shù)列{an2}的前n項(xiàng)和Sn=
1-q2n
1-q2

其中正確命題的序號是①④.(將你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.若曲線C的極坐標(biāo)方程為ρsin2θ+4sinθ-ρ=0,直線l:
x=2+tcosα
y=3+tsinα
(t為參數(shù))過曲線C的焦點(diǎn),則tanα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
2x2+x
log4(3x-1)
+
34x+2
的定義域?yàn)?div id="ctnbd6o" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)正方體內(nèi)接于球,若球的體積為
3
,則正方體的棱長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋中有5個(gè)小球(3白2黑),現(xiàn)從袋中每次取一個(gè)球,不放回地抽取兩次,則在第一次取到白球的條件下,第二次取到白球的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三條直線兩兩異面,則稱為一組“Γ型線”,任選長方體12條面對角線中3條,設(shè)“Γ型線”的組數(shù)為m,則(
x
-
2
x
)
m
4
的展開式中的常數(shù)項(xiàng)是(  )
A、-3B、-60
C、60D、不存在

查看答案和解析>>

同步練習(xí)冊答案