如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓C:(a>b>0)的左、右焦點,直線l:x=-將線段F1F2分成兩段,其長度之比為1:3.設A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 求的取值范圍.

【答案】分析:(Ⅰ)橢圓離心率為,線l:x=-將線段F1F2分成兩段,其長度之比為1:3,可確定幾何量,從而可得橢圓C的方程;
(Ⅱ)分類討論,直線與橢圓方程聯(lián)立,利用韋達定理及向量知識,即可求得結(jié)論.
解答:解:(Ⅰ)設F2(c,0),則=,所以c=1.
因為離心率e=,所以a=,所以b=1
所以橢圓C的方程為.                    …(6分)
(Ⅱ)當直線AB垂直于x軸時,直線AB方程為x=-,此時P(,0)、Q(,0),
當直線AB不垂直于x軸時,設直線AB的斜率為k,M(-,m) (m≠0),A(x1,y1),B(x2,y2).
得(x1+x2)+2(y1+y2=0,
則-1+4mk=0,∴k=
此時,直線PQ斜率為k1=-4m,PQ的直線方程為,即y=-4mx-m.
聯(lián)立消去y,整理得(32m2+1)x2+16m2x+2m2-2=0.
所以,
于是=(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+(4mx1+m)(4mx2+m)
=
==
令t=1+32m2,1<t<29,則
又1<t<29,所以
綜上,的取值范圍為[-1,).…(15分)
點評:本題主要考查橢圓的幾何性質(zhì),直線與橢圓的位置關系等基礎知識,同時考查解析幾何的基本思想方法和綜合解題能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,F(xiàn)1,F(xiàn)2是離心率為
2
2
的橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,直線l:x=-
1
2
將線段F1F2分成兩段,其長度之比為1:3.設A,B是C上的兩個動點,線段AB的中點M在直線l上,線段AB的中垂線與C交于P,Q兩點.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點M,使以PQ為直徑的圓經(jīng)過點F2,若存在,求出M點坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•浙江模擬)如圖,F(xiàn)1,F(xiàn)2是離心率為
2
2
的橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,直線l:x=-
1
2
將線段F1F2分成兩段,其長度之比為1:3.設A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 求
F2P
F2Q
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省臨海市高三第三次模擬理科數(shù)學試卷(解析版) 題型:解答題

如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓C:(a>b>0)的左、右焦點,直線:x=-將線段F1F2分成兩段,其長度之比為1 : 3.設A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.

(Ⅰ) 求橢圓C的方程;

(Ⅱ) 求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西南昌10所省高三第二次模擬突破沖刺理科數(shù)學(一)(解析版) 題型:解答題

如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓

C:(a>b>0)的左、右焦點,直線:x=-將線段F1F2分成兩段,其長度之比為1 : 3.設A,B是C上的兩個動點,線段AB的中點M在直線l上,線段AB的中垂線與C交于P,Q兩點.

(Ⅰ) 求橢圓C的方程;

(Ⅱ) 是否存在點M,使以PQ為直徑的圓經(jīng)過點F2,若存在,求出M點坐標,若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省高三高考模擬測試理科數(shù)學試卷(解析版) 題型:解答題

 如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓C:(a>b>0)的左、右焦點,直線:x=-將線段F1F2分成兩段,其長度之比為1 : 3.設A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.

(Ⅰ) 求橢圓C的方程;

(Ⅱ) 求的取值范圍.

 

查看答案和解析>>

同步練習冊答案