已知定點(diǎn)A(1,0)和定直線l:x=-1,在l上有兩動點(diǎn)E,F(xiàn)且滿足,另有動點(diǎn)P,滿足(O為坐標(biāo)原點(diǎn)),且動點(diǎn)P的軌跡方程為( )
A.y2=4
B.y2=4x(x≠0)
C.y2=-4
D.y2=-4x(x≠0)
【答案】分析:設(shè)P(x,y),欲動點(diǎn)P的軌跡方程,即尋找x,y之間 的關(guān)系式,利用向量間的關(guān)系求出向量的坐標(biāo)后垂直條件即得動點(diǎn)P的軌跡方程.
解答:解:設(shè)P(x,y),E(-1,y1),F(xiàn)(-1,y2)(y1,y2均不為零)
⇒y1=y,即E(-1,y).

y2=4x(x≠0).
故選B.
點(diǎn)評:本題主要考查了軌跡方程的問題.本題解題的關(guān)鍵是利用了向量平行和垂直的坐標(biāo)運(yùn)算求得軌跡方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知定點(diǎn)A(1,0),定圓C:(x+1)2+y2=8,M為圓C上的一個動點(diǎn),點(diǎn)P在線段AM上,點(diǎn)N在線段CM上,且滿足
AM
=2
AP
,
NP
AM
=0
,則點(diǎn)N的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax
x+b
,且f(1)=1,f(-2)=4.
(1)求a、b的值;
(2)已知定點(diǎn)A(1,0),設(shè)點(diǎn)P(x,y)是函數(shù)y=f(x)(x<-1)圖象上的任意一點(diǎn),求|AP|的最小值,并求此時點(diǎn)P的坐標(biāo);
(3)當(dāng)x∈[1,2]時,不等式f(x)≤
2m
(x+1)|x-m|
恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)A(1,0)和定直線x=-1上的兩個動點(diǎn)E、F,滿足
AE
AF
,動點(diǎn)P滿足
EP
OA
,
FO
OP
(其中O為坐標(biāo)原點(diǎn)).
(1)求動點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)B(0,2)的直線l與(1)中軌跡C相交于兩個不同的點(diǎn)M、N,若
AM
AN
<0
,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)A(1,0),定直線l:x=5,動點(diǎn)M(x,y)
(Ⅰ)若M到點(diǎn)A的距離與M到直線l的距離之比為
5
5
,試求M的軌跡曲線C1的方程.
(Ⅱ)若曲線C2是以C1的焦點(diǎn)為頂點(diǎn),且以C1的頂點(diǎn)為焦點(diǎn),試求曲線C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)A(1,0)和定圓B:x2+y2+2x-15=0,動圓P和定圓B相切并過A點(diǎn),
(1)求動圓P的圓心P的軌跡C的方程.
(2)設(shè)Q是軌跡C上任意一點(diǎn),求∠AQB的最大值.

查看答案和解析>>

同步練習(xí)冊答案