分析 由題意可得函數(shù)f(x)在其定義域內是減函數(shù),結合函數(shù)的解析式得0<a<1,且2a≥1且2-8a+3≤0,由此解得a的取值范圍.
解答 解:∵對任意的x1,x2∈R,(x1-x2)[f(x1)-f(x2)]<0,
∴函數(shù)f(x)在其定義域內是減函數(shù).
再由函數(shù)f(x)=$\left\{\begin{array}{l}{2{x}^{2}-8ax+3,x<1}\\{lo{g}_{a}x,x≥1}\end{array}$(a>0且a≠1)
可得0<a<1,且2a≥1且2-8a+3≤0,
解得$\frac{1}{2}$≤a≤$\frac{5}{8}$,
故答案為:[$\frac{1}{2}$,$\frac{5}{8}$].
點評 本題主要考查函數(shù)的單調性的判斷和證明,分段函數(shù)的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | a≥$\frac{1}{5}$ | B. | a>$\frac{1}{5}$ | C. | a<$\frac{1}{5}$ | D. | a≤$\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>b>c | B. | c>a>b | C. | b>c>a | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{7}{2}$ | B. | 3 | C. | $\frac{5}{2}$ | D. | $\frac{12}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}<\frac{1}{a}<{b^2}<{a^2}$ | B. | $\frac{1}<\frac{1}{a}<{a^2}<{b^2}$ | C. | $\frac{1}{a}<\frac{1}<{b^2}<{a^2}$ | D. | $\frac{1}{a}<\frac{1}<{a^2}<{b^2}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com