已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線過(guò)點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若拋物線與直線交于、兩點(diǎn),求證:.
(1);(2)

試題分析:(1)由題意可知,拋物線的開(kāi)口向右,所以可設(shè)拋物線的標(biāo)準(zhǔn)方程為:,因?yàn)閽佄锞過(guò)點(diǎn),從而求出方程;(2)設(shè)出兩點(diǎn)坐標(biāo),聯(lián)立直線和拋物線的方程,化簡(jiǎn)整理為一元二次方程,根據(jù)韋達(dá)定理寫(xiě)出兩根之和與兩根之積,由斜率公式寫(xiě)出,利用兩根和與兩根之積求出其乘積.
試題解析:(1)設(shè)拋物線的標(biāo)準(zhǔn)方程為:,因?yàn)閽佄锞過(guò)點(diǎn),所以,
解得,所以拋物線的標(biāo)準(zhǔn)方程為:
(2)設(shè)兩點(diǎn)的坐標(biāo)分別為,由題意知:
 消去得: ,根據(jù)韋達(dá)定理知:,
所以,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為橢圓的左、右焦點(diǎn),且點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)過(guò)的直線交橢圓兩點(diǎn),則的內(nèi)切圓的面積是否存在最大值?
若存在其最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,直線l與拋物線y2=4x相交于不同的A、B兩點(diǎn).
(1)如果直線l過(guò)拋物線的焦點(diǎn),求·的值;
(2)如果·=-4,證明直線l必過(guò)一定點(diǎn),并求出該定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,長(zhǎng)軸長(zhǎng)為,直線交橢圓于不同的兩點(diǎn)
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若直線不經(jīng)過(guò)橢圓上的點(diǎn),求證:直線的斜率互為相反數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓、是其左右焦點(diǎn),離心率為,且經(jīng)過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若、分別是橢圓長(zhǎng)軸的左右端點(diǎn),為橢圓上動(dòng)點(diǎn),設(shè)直線斜率為,且,求直線斜率的取值范圍;
(3)若為橢圓上動(dòng)點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓的左焦點(diǎn)為,離心率為,過(guò)點(diǎn)且與軸垂直的直線被橢圓截得的線段長(zhǎng)為
(1)求橢圓方程;
(2)過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn),當(dāng)面積最大時(shí),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

矩形的中心在坐標(biāo)原點(diǎn),邊軸平行,=8,=6.分別是矩形四條邊的中點(diǎn),是線段的四等分點(diǎn),是線段的四等分點(diǎn).設(shè)直線,,的交點(diǎn)依次為.

(1)求以為長(zhǎng)軸,以為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點(diǎn)都在(1)中的橢圓Q上,請(qǐng)以點(diǎn)L為例,給出證明(即證明點(diǎn)L在橢圓Q上).
(3)設(shè)線段等分點(diǎn)從左向右依次為,線段等分點(diǎn)從上向下依次為,那么直線與哪條直線的交點(diǎn)一定在橢圓Q上?(寫(xiě)出結(jié)果即可,此問(wèn)不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的離心率,且橢圓C上一點(diǎn)到點(diǎn)Q的距離最大值為4,過(guò)點(diǎn)的直線交橢圓于點(diǎn)
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)AB是橢圓的長(zhǎng)軸,點(diǎn)C在橢圓上,且,若AB=4,,則橢圓的兩個(gè)焦點(diǎn)之間的距離為_(kāi)_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案