考點(diǎn):函數(shù)的單調(diào)性及單調(diào)區(qū)間
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:分類討論去絕對(duì)值,當(dāng)x≥0時(shí),f(x)=1,為常數(shù)函數(shù);當(dāng)x<0時(shí),f(x)=
| 2x+1-1,-1≤x<0 | -2x+1+1,x<-1 |
| |
,可得單調(diào)遞減區(qū)間為:(-∞,-1).
解答:
解:由題意可得當(dāng)x≥0時(shí),2
x-1≥0,
∴f(x)=||2
x-1|-2
x|=|2
x-1-2
x|=1,為常數(shù)函數(shù);
當(dāng)x<0時(shí),2
x-1<0,
∴f(x)=||2
x-1|-2
x|=|-2
x+1-2
x|
=|1-2
x+1|=
| 2x+1-1,-1≤x<0 | -2x+1+1,x<-1 |
| |
,
易得函數(shù)的單調(diào)遞減區(qū)間為:(-∞,-1)
故答案為:(-∞,-1)
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性及單調(diào)區(qū)間,去絕對(duì)值化為分段函數(shù)是解決問題的關(guān)鍵,屬中檔題.