已知數(shù)列{an}的前n項(xiàng)和Sn=n2-4n+4(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)試構(gòu)造一個(gè)數(shù)列{bn}(寫出{bn}的一個(gè)通項(xiàng)公式)滿足:對(duì)任意的正整數(shù)n都有bn<an,且
lim
n→∞
an
bn
=2,并說明理由;
(3)設(shè)各項(xiàng)均不為零的數(shù)列{cn}中,所有滿足的正整數(shù)i的個(gè)數(shù)稱為這個(gè)數(shù)列{cn}的變號(hào)數(shù).令cn=1-
4
an
(n∈N*),求數(shù)列{cn}的變號(hào)數(shù).
考點(diǎn):數(shù)列的應(yīng)用
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)利用n≥2時(shí),an=Sn-Sn-1=2n-5,可求數(shù)列{an}的通項(xiàng)公式;
(2)構(gòu)造數(shù)列bn=n-k,對(duì)任意的正整數(shù)n都有bn<an,可得k>3,即可得出結(jié)論;
(3)驗(yàn)證n≥2時(shí),有2個(gè)變號(hào)數(shù);判斷n=1時(shí)變號(hào)數(shù)有1個(gè),最后綜合答案可得.
解答: 解:(1)∵Sn=n2-4n+4,
∴n≥2時(shí),an=Sn-Sn-1=2n-5,
n=1時(shí),a1=1,
∴an=
2n-5,n≥2
1,n=1
…(4分)
(2)要使
lim
n→∞
an
bn
=2,可構(gòu)造數(shù)列bn=n-k,
∵對(duì)任意的正整數(shù)n都有bn<an,
∴當(dāng)n≥2時(shí),n-k<2n-5恒成立,即n>5-k恒成立,即5-k<2,
∴k>3,
又bn≠0,∴k∉N*,∴bn=n-
7
2
,等等.        …(10分)
(3)由題設(shè)cn=
-3,n=1
1-
4
2n-5
,n≥2
,
當(dāng)n≥2時(shí),cn•cn+1<0,可得
3
2
<n<
5
2
7
2
<n<
9
2
,
∴n=2或n=4;…(14分)
又∵c1=-3,c2=5,∴n=1時(shí)也有c1•c2<0.
綜上得 數(shù)列{cn}共有3個(gè)變號(hào)數(shù),即變號(hào)數(shù)為3.   …(16分)
點(diǎn)評(píng):本題考查數(shù)列與函數(shù)的綜合,考查數(shù)列的通項(xiàng),考查新定義,解題的關(guān)鍵是理解新定義,判斷數(shù)列的單調(diào)性,從而確定數(shù)列的變號(hào)數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=2px(p>0)的焦點(diǎn)為F,已知點(diǎn)A,B為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足∠AFB=60°,過點(diǎn)AB的中點(diǎn)M作拋物線準(zhǔn)線的垂線MN,垂足為N.則
|MN|
|AB|
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3-bx2+9x+2,若f(x)在x=1處的切線方程為3x+y-6=0.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若對(duì)任意的x∈[
1
4
,2]都有f(x)≥t2-2t-1成立,求函數(shù)g(t)=t2+t-2的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-2|,g(x)=-|x+3|+m.
(Ⅰ)若關(guān)于x的不等式g(x)≥0的解集為{x|-5≤x≤-1},求實(shí)數(shù)m的值;
(Ⅱ)若f(x)>g(x)對(duì)于任意的x∈R恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了宣傳“低碳生活”,來自三個(gè)不同生活小區(qū)的3名志愿者利用周末休息時(shí)間到這三個(gè)小區(qū)進(jìn)行演講,每個(gè)志愿者隨機(jī)地選擇去一個(gè)生活小區(qū),且每個(gè)生活小區(qū)只去一個(gè)人.
(1)求甲恰好去自己所生活小區(qū)宣傳的概率;
(2)求3人都沒有去自己所生活的小區(qū)宣傳的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-x(e為自然對(duì)數(shù)的底數(shù)).
(1)求f(x)的最小值;
(2)設(shè)不等式f(x)>ax的解集為P,若M={x|
1
2
≤x≤2}
,且M∩P≠∅,求實(shí)數(shù)a的取值范圍
(3)已知n∈N*,且Sn=
n
0
f(x)dx
,是否存在等差數(shù)列{an}和首項(xiàng)為f(1)公比大于0的等比數(shù)列{bn},使得Sn=An+Bn(其中An,Bn分別是數(shù)列{an},{bn}的前n項(xiàng)和)?若存在,請(qǐng)求出數(shù)列{an},{bn}的通項(xiàng)公式.若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=x2e-x+2a,x∈R.
(Ⅰ)求f(x)的極值;
(Ⅱ)當(dāng)x>0時(shí),恒有aex>x2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線與x軸交于點(diǎn)M,過M點(diǎn)斜率為k的直線l與拋物線C交于第一象限內(nèi)的A,B兩點(diǎn),若|AM|=
5
4
|AF|,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實(shí)常數(shù),y=f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=-x2-4x+2,若f(x)≥a+1對(duì)一切x≥0成立,則a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案