已知函數(shù)f(x)=ax3-bx2+9x+2,若f(x)在x=1處的切線方程為3x+y-6=0.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若對任意的x∈[
1
4
,2]都有f(x)≥t2-2t-1成立,求函數(shù)g(t)=t2+t-2的最值.
考點(diǎn):導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用,利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(I)欲求實(shí)數(shù)a、b的值,利用f(x)在x=1處的切線方程為3x+y-6=0,結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問題解決;
(II)求導(dǎo)數(shù),確定f(x)在[
1
4
,2]上的最小值為2,由f(x)≥t2-2t-1對x∈[
1
4
,2]恒成立,則t2-2t-1≤2,求出t的范圍,從而可求函數(shù)g(t)=t2+t-2的最值.
解答: 解:(Ⅰ)由已知,得切點(diǎn)為(1,3),且f′(x)=3ax2-2bx+9,
由題意可得
f(1)=a-b+9+2=3
f′(1)=3a-2b+9=-3
,
解得
a=4
b=12
,
故f(x)=4x3-12x2+9x+2;
(II)f′(x)=12x2-24x+9,
由f′(x)=0,得x=
1
2
3
2
,
由f′(x)>0,得x>
3
2
或x<
1
2
;由f′(x)<0,得
1
2
<x<
3
2
;
∴f(x)的單調(diào)增區(qū)間為(
3
2
,+∞),(-∞,
1
2
);f(x)的單調(diào)減區(qū)間為(
1
2
3
2
);
∴f(x)的極小值為f(
3
2
)=2,
又f(
1
4
)=
57
16
,f(2)=4,
∴f(x)在[
1
4
,2]上的最小值為2,
由f(x)≥t2-2t-1對x∈[
1
4
,2]恒成立,則t2-2t-1≤2,
則t2-2t-3≤0,解得-1≤t≤3,
而g(t)=t2+t-2=(t+
1
2
)2-
9
4

故當(dāng)t=-
1
2
時(shí),g(t)最小值為-
9
4
;當(dāng)t=3時(shí),g(t)最大值為10.
點(diǎn)評:此題考查學(xué)生會利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線方程的斜率,會利用導(dǎo)函數(shù)的正負(fù)判斷函數(shù)的單調(diào)性并根據(jù)函數(shù)的增減性得到函數(shù)的極值,是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓F的圓心為雙曲線
x2
5
-
y2
4
=1的右焦點(diǎn),且與該雙曲線的漸近線相切,則圓F的方程為( 。
A、(x+3)2+y2=4
B、(x+3)2+y2=2
C、(x-3)2+y2=4
D、(x-3)2+y2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=Acosωx(A>0,ω>0)的部分圖象如圖所示,其中△PQR為等腰直角三角形,∠PQR=
π
2
,PR=1.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)y=f(x)-
1
4
在x∈[0,4]時(shí)的所有零點(diǎn)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,滿足2asinA=(2b-
3
c)sinB+(2c-
3
b)sinC.
(Ⅰ)求角A的大;
(Ⅱ)若a=2,b=2
3
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c為其三條邊,試比較a2+b2+c2與2(ab+bc+ac)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足a(sinA-sinB)+bsinB=csinC上.
(1)求角C的值;
(2)若c=1,且△ABC為銳角三角形,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+lnx,其中a為常數(shù),e為自然對數(shù)的底數(shù).
(1)求f(x)的單調(diào)區(qū)間;
(2)若a<0,且f(x)在區(qū)間(0,e]上的最大值為-2,求a的值;
(3)當(dāng)a=-1時(shí),試證明:x|f(x)|>lnx+
1
2
x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2-4n+4(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)試構(gòu)造一個(gè)數(shù)列{bn}(寫出{bn}的一個(gè)通項(xiàng)公式)滿足:對任意的正整數(shù)n都有bn<an,且
lim
n→∞
an
bn
=2,并說明理由;
(3)設(shè)各項(xiàng)均不為零的數(shù)列{cn}中,所有滿足的正整數(shù)i的個(gè)數(shù)稱為這個(gè)數(shù)列{cn}的變號數(shù).令cn=1-
4
an
(n∈N*),求數(shù)列{cn}的變號數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,那么sin2α的值為
 

查看答案和解析>>

同步練習(xí)冊答案