已知函數(shù) (n∈N*).?

(1)當(dāng)n=1,2,3,…時,把已知函數(shù)的圖象和直線y=1的交點(diǎn)的橫坐標(biāo)依次記為a1,a2,a3,…,求證:a1+a2+…+an<1;??

(2)對于每一個n的值,設(shè)AnBn為已知函數(shù)的圖象上與x軸距離為1的兩點(diǎn),求證:n取任意一個正整數(shù)時,以AnBn為直徑的圓都與一條定直線相切,并求出這條定直線的方程和切點(diǎn)的坐標(biāo).

解析:原函數(shù)可化為y= log2x.?

(1)y=1時,可求得x=()n,?

an=()n= ()n-1.?

∴{an}是以為首項,以為公比的等比數(shù)列.?

a1+a2+a3+…+an=

(2)同理可以求An、Bn的橫坐標(biāo),可得An、Bn的坐標(biāo)分別為(,1)、(2n,?-1)?.因此,|AnBn|=.故AnBn的中點(diǎn)C到y軸距離為.

∴以C為圓心,AnBn為直徑的圓必定與定直線y軸相切,這條定直線的方程為x=0.?

由點(diǎn)C的縱坐標(biāo)為0,可知從點(diǎn)C到y軸作垂線的垂足就是原點(diǎn)即切點(diǎn),所以切點(diǎn)坐標(biāo)為(0,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x-2
x+1
(x≠-1,x∈R)
,數(shù)列{an}滿足 a1=a(a≠-1,a∈R),an+1=f(an)(n∈N*).
(1)若數(shù)列{an}是常數(shù)列,求a的值;
(2)當(dāng)a1=4時,記bn=
an-2
a n-1
(n∈N*)
,證明數(shù)列{bn}是等比數(shù)列,并求出通項公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+1
x+2
(x≠-2,x∈R)
,數(shù)列{an}滿足a1=a(a≠-2,a∈R),an+1=f(an)(n∈N*).
(1)若數(shù)列{an}是常數(shù)列,求a的值;
(2)當(dāng)a1=2時,記bn=
an-1
a n+1
(n∈N*)
,證明數(shù)列{bn}是等比數(shù)列,并求出通項公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為偶函數(shù),且f(2+x)=f(2-x),當(dāng)-2≤x≤0時f(x)=2*,又當(dāng)n∈N×時an=f(n),則a2010=
1
4
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•荊門模擬)已知函數(shù)f(x)滿足對于?x∈R,均有f(x)+2f(-x)=ax+2(
1
a
)x+xlna(a>1)
成立.
(1)求f(x)的解析式;
(2)求f(x)的最小值;
(3)證明:(
1
n
)n+(
2
n
)n+
+(
n
n
)n
e
e-1
(n∈N+)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)(nN+),且y=f(x)的圖象經(jīng)過點(diǎn)(1,n2),數(shù)列{an}(nN+)為等差數(shù)列.(1)求數(shù)列{ an}的通項公式;

(2)當(dāng)n為奇函數(shù)時,設(shè),是否存在自然數(shù)mM,使不等式m<<M恒成立,若存在,求出M-m的最小值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案