5.要從160名學生中抽取容量為20的樣本,用系統(tǒng)抽樣法將160名學生從1~160編號.按編號順序平均分成20組(1~8號,9~16號,…,153~160號),若第16組應抽出的號碼為125,則第一組中按抽簽方法確定的號碼是( 。
A.7B.5C.4D.3

分析 由系統(tǒng)抽樣的法則,可知第n組抽出個數(shù)的號碼應為x+8(n-1),即可得出結(jié)論.

解答 解:由題意,可知系統(tǒng)抽樣的組數(shù)為20,間隔為8,設第一組抽出的號碼為x,則由系統(tǒng)抽樣的法則,可知第n組抽出個數(shù)的號碼應為x+8(n-1),所以第15組應抽出的號碼為x+8(16-1)=125,解得x=5.
故選:B.

點評 系統(tǒng)抽樣形象地講是等距抽樣,系統(tǒng)抽樣適用于總體中的個體數(shù)較多的情況,系統(tǒng)抽樣屬于等可能抽樣.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.若x,y滿足約束條件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,則z=2x+4y的最小值是( 。
A.-6B.-10C.5D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,點A,B,F(xiàn)分別為橢圓C的左頂點、上頂點、左焦點,若∠AFB=∠BAF+90°,則橢圓C的離心率是$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.-630°化為弧度為(  )
A.-$\frac{7π}{2}$B.$\frac{7π}{4}$C.-$\frac{7π}{16}$D.-$\frac{7π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.△ABC中,若A=60°,$a=\sqrt{3}$,則$\frac{a+b}{sinA+sinB}$=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若圓(x-3)2+(y+5)2=r2上的點到直線4x-3y-2=0的最短距離等于1,則半徑r的值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.定義兩個平面向量的一種運算$\overrightarrow{a}$?$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|sinθ,其中θ表示兩向量的夾角,則關于平面向量上述運算的以下結(jié)論中:
①$\overrightarrow a?\overrightarrow b=\overrightarrow b?\overrightarrow a$,
②l($\overrightarrow{a}$?$\overrightarrow$)=(l$\overrightarrow{a}$)?$\overrightarrow$,
③若$\overrightarrow{a}$=l$\overrightarrow$,則$\overrightarrow{a}$?$\overrightarrow$=0,
④若$\overrightarrow{a}$=l$\overrightarrow$且l>0,則($\overline{a}$+$\overrightarrow$)?$\overrightarrow{c}$=($\overrightarrow{a}$?$\overrightarrow{c}$)+($\overrightarrow$?$\overrightarrow{c}$).
其中恒成立的個數(shù)是( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知tanα=3,計算:
(1)$\frac{4sinα-2cosα}{5cosα+3sinα}$
(2)1-4sinαcosα+2cos2α.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.定義運算:$a?b=\left\{\begin{array}{l}a,(a>b)\\ b,(a<b)\end{array}\right.$,例如2?3=3,則下列等式不能成立的是( 。
A.(a?b)2=a2?b2B.(a?b)?c=a?(b?c)
C.(a?b)2=(b?a)2D.c•(a?b)=(c•a)?(c•b)(c>0)

查看答案和解析>>

同步練習冊答案