設是定義在的可導函數(shù),且不恒為0,記.若對定義域內(nèi)的每一個,總有,則稱為“階負函數(shù)”;若對定義域內(nèi)的每一個,總有,
則稱為“階不減函數(shù)”(為函數(shù)的導函數(shù)).
(1)若既是“1階負函數(shù)”,又是“1階不減函數(shù)”,求實數(shù)的取值范圍;
(2)對任給的“2階不減函數(shù)”,如果存在常數(shù),使得恒成立,試判斷是否為“2階負函數(shù)”?并說明理由.
(1) ;(2)詳見解析.
【解析】
試題分析:(1)利用在上單調(diào)遞增,借助求導的方法進行探究;(2)通過反證法進行證明.本
題關鍵在于判斷 在時無上界,再用單調(diào)性即可證出結論.
試題解析:(1)依題意,在上單調(diào)遞增,
故 恒成立,得, 2分
因為,所以. 4分
而當時,顯然在恒成立,
所以. 6分
(2)①先證:
若不存在正實數(shù),使得,則恒成立. 8分
假設存在正實數(shù),使得,則有,
由題意,當時,,可得在上單調(diào)遞增,
當時,恒成立,即恒成立,
故必存在,使得(其中為任意常數(shù)),
這與恒成立(即有上界)矛盾,故假設不成立,
所以當時,,即; 13分
②再證無解:
假設存在正實數(shù),使得,
則對于任意,有,即有,
這與①矛盾,故假設不成立,
所以無解,
綜上得,即,
故所有滿足題設的都是“2階負函數(shù)”. 16分
考點:1.導數(shù)的應用;2.新定義問題;3.反證法.
科目:高中數(shù)學 來源: 題型:
lim |
n→∞ |
f(x+2)-2 |
2x |
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年江蘇省五市高三第三次調(diào)研測試數(shù)學試卷(解析版) 題型:解答題
設是定義在的可導函數(shù),且不恒為0,記.若對定義域內(nèi)的每一個,總有,則稱為“階負函數(shù) ”;若對定義域內(nèi)的每一個,總有,則稱為“階不減函數(shù)”(為函數(shù)的導函數(shù)).
(1)若既是“1階負函數(shù)”,又是“1階不減函數(shù)”,求實數(shù)的取值范圍;
(2)對任給的“2階不減函數(shù)”,如果存在常數(shù),使得恒成立,試判斷是否為“2階負函數(shù)”?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年浙江省寧波市五校高三適應性考試文科數(shù)學試卷(解析版) 題型:選擇題
設是定義在上可導函數(shù)且滿足對任意的正數(shù),若則下列不等式恒成立的是
A、 B、 C、 D、
查看答案和解析>>
科目:高中數(shù)學 來源:浙江省模擬題 題型:單選題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com