(本小題滿分分)已知函數(shù)(,是不同時(shí)為零的常數(shù)).
(1)當(dāng)時(shí),若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;
(2)求證:函數(shù)在內(nèi)至少存在一個(gè)零點(diǎn).
(1)(2)時(shí)易證結(jié)論;時(shí),利用函數(shù)的零點(diǎn)存在定理可以證明結(jié)論成立.
解析試題分析:(1)當(dāng)時(shí),,
由不等式即對(duì)任意恒成立,
得,解得. ……5分
(2)證明:當(dāng)時(shí),因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/9e/4/mcpz22.png" style="vertical-align:middle;" />,不同時(shí)為零,所以,
所以的零點(diǎn)為, ……6分
當(dāng)時(shí),二次函數(shù)的對(duì)稱軸方程為, ……7分
①若即時(shí),
,
∴函數(shù)在內(nèi)至少存在一個(gè)零點(diǎn). ……10分
②若即時(shí),
,
∴函數(shù)在內(nèi)至少存在一個(gè)零點(diǎn). ……13分
綜上得:函數(shù)在內(nèi)至少存在一個(gè)零點(diǎn). ……14分
考點(diǎn):本小題主要考查二次函數(shù)恒成立問題和函數(shù)零點(diǎn)存在定理的應(yīng)用,考查學(xué)生的轉(zhuǎn)化能力和運(yùn)算求解能力以及分類討論思想的應(yīng)用.
點(diǎn)評(píng):恒成立問題,一般轉(zhuǎn)化為最值問題解決,而函數(shù)的零點(diǎn)存在定理能確定一定存在零點(diǎn),但是確定不了存在幾個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)="2" sin(0≤x≤5),點(diǎn)A、B分別是函數(shù)y=f(x)圖像上的最高點(diǎn)和最低點(diǎn).
(1)求點(diǎn)A、B的坐標(biāo)以及·的值;
(2)沒點(diǎn)A、B分別在角、的終邊上,求tan()的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分) 本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.
已知函數(shù)=.
(1)判斷函數(shù)的奇偶性,并證明;
(2)求的反函數(shù),并求使得函數(shù)有零點(diǎn)的實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)(),
(Ⅰ)求函數(shù)的最小值;
(Ⅱ)已知,:關(guān)于的不等式對(duì)任意恒成立;
:函數(shù)是增函數(shù).若“或”為真,“且”為假,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
命題方程有兩個(gè)不等的正實(shí)數(shù)根,命題方程無實(shí)數(shù)根。若“或”為真命題,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題共12分)水庫的蓄水量隨時(shí)間而變化,現(xiàn)用t表示時(shí)間,以月為單位,年初為起點(diǎn),根據(jù)歷年數(shù)據(jù),某水庫的蓄水量(單位:億立方米)關(guān)于t的近似函數(shù)關(guān)系式為
V(t)=
(Ⅰ)該水庫的蓄水量小于50的時(shí)期稱為枯水期.以i-1<t<i表示第i月份(i=1,2,…,12),問一年內(nèi)哪幾個(gè)月份是枯水期?
(Ⅱ)求一年內(nèi)該水庫的最大蓄水量(取e=2.7計(jì)算).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com