19.若圓錐的側(cè)面積為$9\sqrt{2}$π,且母線與底面所成的角為$\frac{π}{4}$,則此圓錐的體積為9π.(答案保留π)

分析 設(shè)底面半徑為r,則母線長l=$\sqrt{2}$r,h=r,利用圓錐的側(cè)面積為$9\sqrt{2}$π,求出r,最后利用圓錐的體積公式求出即可.

解答 解:設(shè)底面半徑為r,則母線長l=$\sqrt{2}$r,h=r
由圓錐的側(cè)面積公式得S=πrl=π×r×$\sqrt{2}$r=9$\sqrt{2}$π,
∴r=3,
∴圓錐的體積為$\frac{1}{3}π•{3}^{2}•3$=9π.
故答案為:9π

點評 此題主要考查了圓錐側(cè)面面積、體積的計算,熟練記憶圓錐的側(cè)面積、體積公式是解決問題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知關(guān)于x的方程2x2-($\sqrt{3}$+1)x+m=0的兩根為sin θ、cos θ,θ∈(0,2π),求:
(1)$\frac{sin^2θ}{sinθ-cosθ}$+$\frac{cos^2θ}{cosθ-sinθ}$的值;
(2)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若以連續(xù)兩次骰子分別得到的點數(shù)m,n作為點P的橫、縱坐標(biāo),則點P在直線x+y=5左下方的概率為(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{12}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓C1:x2+y2=9與圓C2:(x-3)2+(y-4)2=r2(r>0)相外切.
(1)若圓C2關(guān)于直線l:$\frac{ax}{9}-\frac{by}{12}$=1對稱,求由點(a,b)向圓C2所作的切線長的最小值;
(2)若直線l1過點A(1,0)且與圓C2相交于P,Q兩點,求△C2PQ面積的最大值,并求此時直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$其離心率$e=\frac{{\sqrt{3}}}{2}$,右焦點為F,拋物線y2=8x的焦點是橢圓的一個頂點.
(1)求橢圓的方程;
(2)過點F的直線與橢圓分別交于A,B兩點,交y軸于P點,且$\overrightarrow{PA}={λ_1}\overrightarrow{AF},\overrightarrow{PB}={λ_2}\overrightarrow{BF}$,試問λ12是否為定值,若是求出該值,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)滿足:在定義域D內(nèi)存在實數(shù)x0,使得f(x0+1)=f(x0)+f(1)成立,
則稱函數(shù)f(x)為“1的飽和函數(shù)”.給出下列五個函數(shù):
①f(x)=2x;②f(x)=$\frac{1}{x}$;③$f(x)=lg({x^2}-\frac{1}{2})$;④$f(x)=\frac{2x-1}{e^x}$.
其中是“1的飽和函數(shù)”的所有函數(shù)的序號為( 。
A.①②④B.②③④C.①②③D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知焦點在y軸上的橢圓$\frac{x^2}{m}+\frac{y^2}{5}=1$的離心率$e=\frac{{\sqrt{10}}}{5}$,則m的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知各項均為正數(shù)的等比數(shù)列{an}中,a2a9=10,則數(shù)列{lgcn}的前10項和為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知命題p:1∈{x|x2<a},q:2∈{x|x2<a},則“p且q”為真命題時,a的取值范圍是a>4.

查看答案和解析>>

同步練習(xí)冊答案