分析 (1)不等式等價于①$\left\{\begin{array}{l}{x<-\frac{1}{2}}\\{-2x-1+(3-2x)≤6}\end{array}\right.$,或②$\left\{\begin{array}{l}{-\frac{1}{2}≤x≤\frac{3}{2}}\\{2x+1+(3-2x)≤6}\end{array}\right.$,或③$\left\{\begin{array}{l}{x>\frac{3}{2}}\\{2x+1+(2x-3)≤6}\end{array}\right.$.分別求出這3個不等式組的解集,再取并集,即得所求.
(2)由絕對值不等式的性質(zhì)求出f(x)的最小值等于4,故有|a-1|>4,解此不等式求得實數(shù)a的取值范圍.
解答 解:(1)不等式f(x)≤6 即|2x+1|+|2x-3|≤6,
∴①$\left\{\begin{array}{l}{x<-\frac{1}{2}}\\{-2x-1+(3-2x)≤6}\end{array}\right.$,或②$\left\{\begin{array}{l}{-\frac{1}{2}≤x≤\frac{3}{2}}\\{2x+1+(3-2x)≤6}\end{array}\right.$,或③$\left\{\begin{array}{l}{x>\frac{3}{2}}\\{2x+1+(2x-3)≤6}\end{array}\right.$.
解①得-1≤x<-$\frac{1}{2}$,解②得-$\frac{1}{2}$≤x≤$\frac{3}{2}$,解③得$\frac{3}{2}$<x≤2.
即不等式的解集為{x|-1≤x≤2}.
(2)∵f(x)=|2x+1|+|2x-3|≥|(2x+1)-(2x-3)|=4,即f(x)的最小值等于4,
∴|a-2|>4,解此不等式得a<-2或a>6.
故實數(shù)a的取值范圍為(-∞,-2)∪(6,+∞).
點評 本題主要考查絕對值不等式的解法,關(guān)鍵是去掉絕對值,化為與之等價的不等式組來解.體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(49)<f(64)<f(81) | B. | f(49)<f(81)<f(64) | C. | f(64)<f(49)<f(81) | D. | f(64)<f(81)<f(49) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{3}$] | B. | [$\frac{1}{3}$,$\frac{2}{3}$] | C. | [$\frac{2}{3}$,$\frac{4}{3}$] | D. | ($\frac{2}{3}$,$\frac{4}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 設(shè)平面ADF與平面BEC1的交線為l,則直線C1E與l相交 | |
B. | 在棱A1C1上存在點N,使得三棱錐N-ADF的體積為$\frac{\sqrt{3}}{7}$ | |
C. | 設(shè)點M在BB1上,當(dāng)BM=1時,平面CAM⊥平面ADF | |
D. | 在棱A1B1上存在點P,使得C1P⊥AF |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | [160,165) | 5 | 0.05 |
第2組 | [165,170) | ① | 0.35 |
第3組 | [170,175) | 30 | ② |
第4組 | [175,180) | 20 | 0.20 |
第5組 | [180,185] | 10 | 0.10 |
合計 | 100 | 1.00 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com