20.某高校在2011年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組,得到的頻率分布表如表:
組號分組頻數(shù)頻率
第1組[160,165)50.05
第2組[165,170)0.35
第3組[170,175)30
第4組[175,180)200.20
第5組[180,185]100.10
合計1001.00
(1)請先求出頻率分布表中①、②位置相應的數(shù)據(jù),在如圖完成頻率分布直方圖;
(2)由(1)中頻率分布直方圖估計中位數(shù),平均數(shù).

分析 (1)由頻率=$\frac{頻數(shù)}{總數(shù)}$,能求出頻率分布表中①、②位置相應的數(shù)據(jù),進而能畫出頻率分布直方圖.
(2)由頻率分布直方圖的性質能求出中位數(shù)和平均數(shù)的估計值.

解答 解:(1)由題可知,第2組的頻數(shù)①為0.35×100=35人,
第3組的頻率②為$\frac{30}{100}$=0.30,…(3分)
頻率分布直方圖如下:
…(6分)
(2)由頻率分布直方圖得:
中位數(shù)為:$170+\frac{0.1}{0.06}=\frac{515}{3}$…(9分)
平均數(shù)為:$\frac{1}{100}(162.5×5+167.5×35+172.5×30+177.5×20+182.5×10)=172.25$…(12分)

點評 本題考查頻率分布直方表的性質的應用和頻率分布直方圖的作法,考查中位數(shù)、平均數(shù)的求法,是基礎題,解題時要認真審題,注意頻率分布直方圖的性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,在三棱柱ABC-A1B1C1中,側棱AA1⊥底面ABC,AA1=AB=2,AB⊥BC,BC=3.
(1)在棱AC上求一點M,使得AB1∥平面BC1M,說明理由;
(2)若D為AC的中點,求四棱錐B-AA1C1D的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知高為5的四棱錐的俯視圖是如圖所示的矩形,則該四棱錐的體積為( 。
A.24B.80C.64D.240

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=|2x+1|+|2x-3|.
(1)求不等式f(x)≤6的解集;
(2)已知a>0,若關于x的不等式f(x)<|a-2|的解集非空,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知直線($\sqrt{6}$sinθ)x+$\sqrt{3}$y-2=0的傾斜角為θ(θ≠0),則θ=$\frac{3π}{4}$(或135°).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知變量x、y滿足的約束條件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,則z=3x+2y的最大值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若二次函數(shù)y=ax2+4x-2有兩個不同的零點,則實數(shù)a的取值范圍是a>-2且a≠0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在某個位置測得某山峰仰角為θ,對著山峰在地面上前進600m后測得仰角為2θ,繼續(xù)在地面上前進200$\sqrt{3}$m以后測得山峰的仰角為4θ,求該山峰的高度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.給出以下四個命題,
①如果平面α,β,γ滿足α⊥γ,β⊥γ,α∩β=l,則l⊥γ
②若直線l上有無數(shù)個點不在平面α內,則l∥α
③已知a,b是異面直線,α,β為兩個平面,若a?α,a∥β,b?β,b∥α,則α∥β
④一個平面內的已知直線必垂直于另一個平面的無數(shù)條直線
其中正確命題的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習冊答案