(本題滿分14分)

    已知函數(shù),點(diǎn)

   (Ⅰ)若,函數(shù)上既能取到極大值,又能取到極小值,求的取值范圍;

   (Ⅱ) 當(dāng)時(shí),對(duì)任意的恒成立,求的取值范圍;

(Ⅲ)若,函數(shù)處取得極值,且,是坐標(biāo)原點(diǎn),證明:直線與直線不可能垂直.

 

【答案】

解:(Ⅰ)當(dāng)時(shí),

,根據(jù)導(dǎo)數(shù)的符號(hào)可以得出函數(shù)處取得極大值,

處取得極小值.函數(shù)上既能取到極大值,又能取到極小值,

則只要即可,即只要即可.

所以的取值范圍是.                                    ………… 4分

(Ⅱ)當(dāng)時(shí),對(duì)任意的恒成立,

對(duì)任意的恒成立,

也即在對(duì)任意的恒成立.                  

,則.        ………… 6分

,則

則這個(gè)函數(shù)在其定義域內(nèi)有唯一的極小值點(diǎn),

故也是最小值點(diǎn),所以

從而,所以函數(shù)單調(diào)遞增.

函數(shù).故只要即可.

所以的取值范圍是                             ………… 9分

(Ⅲ)假設(shè),即,

,

由于是方程的兩個(gè)根,

.代入上式得.   ………… 12分

,

,與矛盾,

    所以直線與直線不可能垂直.                           ………… 14分

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分14分
A.選修4-4:極坐標(biāo)與參數(shù)方程在極坐標(biāo)系中,直線l 的極坐標(biāo)方程為θ=
π
3
(ρ∈R ),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點(diǎn)P的直角坐標(biāo).
B.選修4-5:不等式選講
設(shè)實(shí)數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時(shí)x,y,z 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AEEBBC=2,上的點(diǎn),且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值

(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題

(本題滿分14分)

已知點(diǎn)是⊙上的任意一點(diǎn),過(guò)垂直軸于,動(dòng)點(diǎn)滿足

(1)求動(dòng)點(diǎn)的軌跡方程; 

(2)已知點(diǎn),在動(dòng)點(diǎn)的軌跡上是否存在兩個(gè)不重合的兩點(diǎn)、,使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請(qǐng)求出一個(gè)長(zhǎng)度為的區(qū)間,使

;如果沒(méi)有,請(qǐng)說(shuō)明理由?(注:區(qū)間的長(zhǎng)度為).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案