用函數(shù)單調性的定義證明:函數(shù)f(x)=在(-∞,0)上是減函數(shù).

答案:
解析:

  證明:任取x1<x2<0,

  則f(x1)-f(x2)=

  由x1<x2<0,知x1x2>0,且x2-x1>0,

  所以f(x1)-f(x2)>0,

  即f(x1)>f(x2).

  故函數(shù)f(x)=在(-∞,0)上是減函數(shù).


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-
1x
,x∈(0,+∞).
(1)用函數(shù)單調性的定義證明:f(x)在其定義域上是單調增函數(shù);
(2)若f(3x-2)>f(9x),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+
2
x

(1)判斷函數(shù)f(x)的奇偶性;
(2)用函數(shù)單調性的定義證明:f(x)在(0,
2
]
上單調遞減;
(3)若關于x的方程f(x)-2a=0在(
1
2
,
2
]
上有解,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
xx-1

(Ⅰ)證明:對于定義域中任意的x均有f(1+x)+f(1-x)=2;
(Ⅱ)用函數(shù)單調性的定義證明函數(shù)f(x)在(1,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)
f(x)=
1-x
&(x∈(-∞,1]
).
(1)求函數(shù)y=f(2x)的定義域;
(2)用函數(shù)單調性的定義證明
f(x)=
1-x
&(x∈(-∞,1]
)在其定義域上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

偶函數(shù)f(x)在(-∞,0)上是增函數(shù),問它在(0,+∞)是增函數(shù)還是減函數(shù)?能否用函數(shù)單調性的定義證明你的結論?

查看答案和解析>>

同步練習冊答案