10.現(xiàn)有6道題,其中3道甲類題,2道乙類題,張同學(xué)從中任取2道題解答.試求:
(I)所取的2道題都是甲類題的概率;
(II)所取的2道題不是同一類題的概率.

分析 列出張同學(xué)從中任取2道題解答的全部基本事件個(gè)數(shù),
(I)交所取的2道題都是甲類題的事件個(gè)數(shù),代入概率公式,可得答案;
(II)所取的2道題不是同一類題的事件個(gè)數(shù),代入概率公式,可得答案.

解答 解:設(shè)甲題為a1,a2,a3,乙題為b1,b2,
則基本事件空間為Ω={(a1,b1)(a1,b2)(b1,b2)(a2,b1)(a2,b2)(a1,a2)(a3,b1)(a3,b2)(a1,a3)(a2,a3)}…4
所以:
(I)所取的2道題都是甲類題的事件有:
(a1,a2)(a1,a3)(a2,a3)共3個(gè),
故所取的2道題都是甲類題的概率$P=\frac{3}{10}$…4
(II)所取的2道題不是同一類題的事件有:
(a1,b1)(a1,b2)(a2,b1)(a2,b2)(a3,b1)(a3,b2)共6個(gè);
故所取的2道題不是同一類題的概率$P=\frac{6}{10}=\frac{3}{5}$…4

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是古典概型概念計(jì)算公式,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)定義域?yàn)镈的函數(shù)f(x),如果對(duì)x∈D,存在正數(shù)k,有|f(x)|≤k|x|成立,則稱函數(shù)f(x)是D上的“倍約束函數(shù)”,已知下列函數(shù):(1)f(x)=2x; (2)f(x)=sin(x+$\frac{π}{4}$);(3)f(x)=$\sqrt{x-1}$;(4)f(x)=$\frac{x}{{x}^{2}+x+1}$;其中是“倍約束函數(shù)”的是( 。
A.(1)(3)(4)B.(1)(2)C.(3)(4)D.(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知m≠0,向量$\overrightarrow a$=(m,3m),向量$\overrightarrow b$=(m+1,6),集合A={x|(x-m2)(x+m-2)=0}.
(1)判斷“$\overrightarrow a$∥$\overrightarrow b$”是“|${\overrightarrow a}$|=$\sqrt{10}$”的什么條件
(2)設(shè)命題p:若$\overrightarrow a$⊥$\overrightarrow b$,則m=-19,命題q:若集合A的子集個(gè)數(shù)為2,則m=1,判斷p∨q,p∧q,¬q的真假,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)x,y,a∈R*,且當(dāng)x+2y=1時(shí),$\frac{3}{x}$+$\frac{a}{y}$的最小值為6$\sqrt{3}$,則當(dāng)$\frac{1}{x}$+$\frac{2}{y}$=1時(shí),3x+ay的最小值是(  )
A.6$\sqrt{3}$B.6C.12D.12$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)y=-x2+2x-5的單調(diào)遞增區(qū)間是( 。
A.(-∞,0]B.[0,+∞)C.[1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在棱長(zhǎng)為4的正方體ABCD-A1B1C1D1中,O是AC的中點(diǎn).
(1)求證:AD1∥平面DOC1;
(2)求異面直線AD1和DC1所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿足f(x)<f(3)的x的取值范圍是(-3,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.求值:
(1)cos(-420°)
(2)$sin(-\frac{π}{6})$
(3)$sin(-\frac{31π}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知M={0,x},N={1,2},若M∩N={1},則M∪N=( 。
A.{0,x,1,2}B.{1,2,0,1}C.{0,1,2}D.無(wú)法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案