在四面體ABCD中,若AB⊥CD,AD⊥BC,求證:AC⊥BD.

答案:
解析:

  過A作AO⊥平面BCD,垂足為O,則AO⊥CD.

  ∵AB⊥CD,AO∩AB=A,

  ∴CD⊥平面ABO

  ∵BO平面ABO,

  ∴CD⊥BO

  同理 BC⊥DO

  ∴O為△BCD的垂心

  ∴CO⊥BD

  ∵AO⊥BD,CO∩AO=O,

  ∴BD⊥平面ACO

  又 AC平面ACO,

  ∴AC⊥BD


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在四面體ABCD中,設(shè)AB=1,CD=2且AB⊥CD,若異面直線AB與CD間的距離為2,則四面體ABCD的體積為( 。
A、
1
3
B、
1
2
C、
2
3
D、
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在四面體ABCD中,M、N分別是面△ACD、△BCD的重心,則四面體的四個(gè)面中與MN平行的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將圖1中的等腰直角三角形ABC沿斜邊BC的中線折起得到四面體ABCD(如圖2),則在四面體ABCD中,AD與BC的位置關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四面體ABCD中,截面EFGH平行于對(duì)棱AB和CD,且FG⊥GH,試問截面在什么位置時(shí)其截面面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四面體ABCD中,已知∠ADB=∠BDC=∠CDA=60°,AD=BD=3,CD=2,則四面體ABCD的外接球的半徑為
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案