20.已知隨機變量X-N(1,1),其正態(tài)分布密度曲線如圖所示,若向正方形OABC中隨機投擲10000個點,則落入陰影部分的點個數(shù)的估計值為( 。
附:若隨機變量ξ-N(μ,σ2),則P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544.
A.6038B.6587C.7028D.7539

分析 由題意P(0<X≤1)=$\frac{1}{2}×0.6826$.P(陰影)=1-P(0<X≤1),即可得出結論

解答 解:由題意P(0<X≤1)=$\frac{1}{2}×0.6826$.
P(陰影)=1-P(0<X≤1)=1-$\frac{1}{2}$×0.6826=1-0.3413=0.6587,
則落入陰影部分點的個數(shù)的估計值為10000×0.6587=6587.
故選:B.

點評 本題考查正態(tài)分布曲線的特點及曲線所表示的意義,考查正態(tài)分布中兩個量μ和σ的應用,考查曲線的對稱性,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.下列說法中錯誤的是( 。
A.垂直于同一條直線的兩條直線相互垂直
B.若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行
C.若一個平面經過另一個平面的垂線,那么這兩個平面相互垂直
D.若一個平面內的兩條相交直線與另一個平面內的相交直線分別平行,那么這兩個平面相互平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.橢圓的對稱中心在坐標原點,一個頂點為A(0,2),右焦點F與點$B(\sqrt{2},\sqrt{2})$的距離為2,
(1)求橢圓的方程;
(2)斜率k≠0的直線l:y=kx-2與橢圓相交于不同的兩點M,N滿足|AM|=|AN|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖正三棱柱ABC-A1B1C1中,底面邊長為a,側棱長為$\frac{{\sqrt{2}}}{2}a$,若經過對角線AB1且與對角線BC1平行的平面交上底面于DB1
(1)試確定D點的位置,并證明你的結論;
(2)求二面角A1-AB1-D的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知點($\sqrt{2}$,2)在冪函數(shù)f(x)的圖象上,點(2,$\frac{1}{2}$)在冪函數(shù)g(x)的圖象上.
(1)求出冪函數(shù)f(x)及g(x)的解析式;
(2)在同一坐標系中畫出f(x)及g(x)的圖象;
(3)觀察(2)中的圖象,寫出當f(x)>g(x)時,x的取值范圍(不用說明理由)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若$\sqrt{a-4}+|{\begin{array}{l}{b-1}\end{array}}|=0$,且一元二次方程kx2+ax+b=0有實數(shù)根,則k的取值范圍是(-∞,0)∪(0,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.△ABC中,角A,B,C的對邊分別為a,b,c,已知$b=\frac{1}{2}$,$bsinA=asin\frac{B}{2}$,則S△ABC的最大值為( 。
A.$\frac{{\sqrt{3}}}{8}$B.$\frac{{\sqrt{3}}}{16}$C.$\frac{{\sqrt{3}}}{24}$D.$\frac{{\sqrt{3}}}{48}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)f(x)=x3+x-3x的其中一個零點所在區(qū)間為(  )
A.$({0,\frac{1}{2}})$B.$({\frac{1}{2},1})$C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知sinx+cosx=$\frac{1}{3}$,且x是第二象限角.
求(1)sinx-cosx
(2)sin3x-cos3x.

查看答案和解析>>

同步練習冊答案