13.如圖四棱錐P-ABCD,四邊形ABCD是正方形,O是正方形的中心,E是PC的中點,且PA=AB=PB.
(1)求證:PA∥平面BDE;
(2)求EO與AB所成的角.

分析 (1)連接OE,易證OE∥AP,得PA∥平面BDE
(2)作BC的中點M并且連接OM,得∠EOM(或補角)就是EO與AB所成的角,解△OME 即可,

解答 解:(1)證明:連接OE,∵O是正方形的中心,E是PC的中點,
易證OE∥AP,OE?平面BDE,AP?平面BDE,得PA∥平面BDE;
(2)作BC的中點M并且連接OM,
得 AB∥OM,∴∠EOM(或補角)就是EO與AB所成的角;
∵四邊形ABCD是正方形,PA=AB=PB,得△OME為等邊三角形,
∴∠EOM=60°
 則異面直線所成角為60°

點評 本題考查了線面平行,及異面直線的夾角,空間問題轉(zhuǎn)化為平面幾何問題是關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=-x2-2x,g(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{x+1,x≤0}\end{array}\right.$.
(1)求g[f(-1)]的值;
(2)試判斷方程f(x)=g(x)解的個數(shù),并判斷其中一個解在區(qū)間(0,1)內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則a1+a3+a5=122.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知$\overrightarrow a=(5,x)$,$|{\overrightarrow a}|=9$,則x=±2$\sqrt{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:①2a+b=0;②當(dāng)-1≤x≤3時,y<0;③若(x1,y1)、(x2,y2)在函數(shù)圖象上,當(dāng)x1<x2時,y1<y2;④9a+3b+c=0其中正確的是( 。
A.①②④B.①④C.①②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個平行班級進行教學(xué)實驗,為了比較教學(xué)效果,期中考試后,分別從兩個班級中各隨機抽取20名學(xué)生的成績進行統(tǒng)計,作出的莖葉圖如圖:記成績不低于70分者為“成績優(yōu)良”.

(1)分別計算甲、乙兩班20個樣本中,化學(xué)分數(shù)前十的平均分,并大致判斷哪種教學(xué)方式的教學(xué)效果更佳;
(2)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為“成績優(yōu)良與教學(xué)方式有關(guān)”?
甲班乙班總計
成績優(yōu)良
成績不優(yōu)良
總計
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,(n=a+b+c+d)
獨立性檢驗臨界值表:
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,若△ABC的面積為$2\sqrt{3}$,$B=\frac{π}{3}$,則$\overrightarrow{AB}•\overrightarrow{BC}$=( 。
A.4B.-4C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若U=R,集合A={x|-3≤2x-1≤3},集合B為函數(shù)y=lg(x2-1)的定義域,則圖中陰影部分對應(yīng)的集合為( 。
A.(-1,1)B.[-1,1]C.[1,2)D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.函數(shù)f(x)=ax+$\frac{x}$(a,b是非零實數(shù))的圖象過點(1,3)和(2,3).
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)奇偶性,并給出證明;
(3)用定義證明函數(shù)f(x)在區(qū)間(2,+∞)上是增函數(shù).

查看答案和解析>>

同步練習(xí)冊答案