3.函數(shù)f(x)=ax+$\frac{x}$(a,b是非零實(shí)數(shù))的圖象過(guò)點(diǎn)(1,3)和(2,3).
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)奇偶性,并給出證明;
(3)用定義證明函數(shù)f(x)在區(qū)間(2,+∞)上是增函數(shù).

分析 (1)根據(jù)函數(shù)的圖象過(guò)點(diǎn)(1,3)和(2,3),用待定系數(shù)法求出a、b的值,可得函數(shù)的解析式.
(2)先判定函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,再根據(jù)f(-x)=-f(x),可得函數(shù)f(x)為奇函數(shù).
(3)利用增函數(shù)的定義證明函數(shù)f(x)在區(qū)間(2,+∞)上是增函數(shù).

解答 解:(1)∵函數(shù)f(x)=ax+$\frac{x}$(a,b是非零實(shí)數(shù))的圖象過(guò)點(diǎn)(1,3)和(2,3),
∴f(1)=a+b=3,f(2)=2a+$\frac{2}$=3,解得a=1,b=2,∴f(x)=x+$\frac{2}{x}$.
(2)根據(jù)f(x)的定義域?yàn)閧x|x≠0},關(guān)于原點(diǎn)對(duì)稱,且滿足f(-x)=-x+$\frac{2}{-x}$=-f(x),可得函數(shù)f(x)為奇函數(shù).
(3)設(shè)x2>x1>2,∵f(x2)-f(x1)=x2-x1+$\frac{1}{{x}_{2}}$-$\frac{1}{{x}_{1}}$=( x2-x1 )•(1-$\frac{1}{{x}_{1}{•x}_{2}}$),
由題設(shè)可得  x2-x1>0,1-$\frac{1}{{x}_{1}{•x}_{2}}$>0,∴f(x2)-f(x1)>0,故函數(shù)f(x)在區(qū)間(2,+∞)上是增函數(shù).

點(diǎn)評(píng) 本題主要考查用待定系數(shù)法求函數(shù)的解析式,函數(shù)的奇偶性的判定,利用函數(shù)的單調(diào)性的定義證明函數(shù)的單調(diào)性,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖四棱錐P-ABCD,四邊形ABCD是正方形,O是正方形的中心,E是PC的中點(diǎn),且PA=AB=PB.
(1)求證:PA∥平面BDE;
(2)求EO與AB所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$) 的最小正周期為π,將該函數(shù)的圖象向左平移$\frac{π}{6}$個(gè)單位后,得到的圖象對(duì)應(yīng)的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象( 。
A.關(guān)于點(diǎn)($\frac{π}{12}$,0)對(duì)稱B.關(guān)于直線x=$\frac{π}{12}$對(duì)稱
C.關(guān)于點(diǎn)($\frac{5}{12}$π,0)對(duì)稱D.關(guān)于直線x=$\frac{5}{12}$π對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)函數(shù)f(x)為偶函數(shù),且f(1+x)=f(1-x),當(dāng)x∈[0,1]時(shí),f(x)=x2,$g(x)={x^{-\frac{2}{3}}}-\frac{1}{2}$,則函數(shù)F(x)=f(x)-g(x)的零點(diǎn)的個(gè)數(shù)為( 。
A.3B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知直線(k+1)x+ky-1=0與兩坐標(biāo)軸圍成的三角形面積為Sk,則S1+S2+…+Sk=$\frac{k}{2(k+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知二次函數(shù)y=f(x)滿足f(-2)=f(4)=-16,且函數(shù)f(x)最大值為2.
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)在[t,t+1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{(3a-1)x+4a,x<1}\\{{a^x},x≥1}\end{array}}\right.$是R上的減函數(shù),那么a的取值范圍是$[\frac{1}{6},\frac{1}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.我國(guó)古代數(shù)學(xué)名著《張邱建算經(jīng)》有“分錢問(wèn)題”:今有與人錢,初一人與三錢,次一人與四錢,次一人與五錢,以次與之,轉(zhuǎn)多一錢,與訖,還斂聚與均分之,人得一百錢,問(wèn)人幾何?意思是:將錢分給若干人,第一人給3錢,第二人給4錢,第三人給5錢,以此類推,每人比前一人多給1錢,分完后,再把錢收回平均分給各人,結(jié)果每人分得100錢,問(wèn)有多少人?則題中的人數(shù)是195.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),已知xf'(x)+f(x)<-f'(x),f(2)=$\frac{1}{3}$,則不等式f(ex-2)-$\frac{1}{{{e^x}-1}}$<0(其中e為自然對(duì)數(shù)的底數(shù))的解集為( 。
A.(0,ln4)B.(-∞,0)∪(ln4,+∞)C.(ln4,+∞)D.(2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案