A. | (3,7) | B. | (9,25) | C. | (13,49) | D. | (9,49) |
分析 由函數(shù)y=f(x)為奇函數(shù),f(x2-6x+21)+f(y2-8y)<0恒成立,可把問(wèn)題轉(zhuǎn)化為(x-3)2+(y-4)2<4,借助于的有關(guān)知識(shí)可求.
解答 解:∵函數(shù)y=f(x)為奇函數(shù),定義在R上的增函數(shù)且f(x2-6x+21)+f(y2-8y)<0恒成立
∴f(x2-6x+21)<-f(y2-8y)=f(8y-y2)恒成立,
∴x2-6x+21<8y-y2,
∴(x-3)2+(y-4)2<4恒成立,
設(shè)M (x,y),則當(dāng)x>3時(shí),M表示以(3,4)為圓心2為半徑的右半圓內(nèi)的任意一點(diǎn),
則d=$\sqrt{{x}^{2}+{y}^{2}}$表示區(qū)域內(nèi)的點(diǎn)和原點(diǎn)的距離.
由下圖可知:d的最小值是OA=$\sqrt{13}$,
OB=OC+CB,5+2=7,
當(dāng)x>3時(shí),x2+y2的范圍為(13,49).
故選:C.
點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性、單調(diào)性及圓的有關(guān)知識(shí),解決問(wèn)題的關(guān)鍵是把“數(shù)”的問(wèn)題轉(zhuǎn)化為“形”的問(wèn)題,借助于圖形的幾何意義減少了運(yùn)算量,體現(xiàn)“數(shù)形結(jié)合:及”轉(zhuǎn)化”的思想在解題中的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {-1,0,1} | B. | {x|-1≤x≤1} | C. | {-1,0} | D. | {0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2,+∞) | B. | (-∞,2) | C. | (3,+∞) | D. | (-∞,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-2,+∞) | B. | (-∞,-2] | C. | (-∞,-6] | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $f({{{log}_3}1.2})>f({-\frac{π}{6}})>f({-1})$ | B. | $f({-\frac{π}{6}})>f({{{log}_3}1.2})>f({-1})$ | ||
C. | $f({-\frac{π}{6}})>f({-1})>f({{{log}_3}1.2})$ | D. | $f({-1})>f({-\frac{π}{6}})>f({{{log}_3}1.2})$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com