曲線
在點
處的切線方程為________________.
或
.
試題分析:
,所以
,當
時,
,故曲線
在點
處的切線方程為
,即
或
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知a為給定的正實數(shù),m為實數(shù),函數(shù)f(x)=ax3-3(m+a)x2+12mx+1.
(Ⅰ)若f(x)在(0,3)上無極值點,求m的值;
(Ⅱ)若存在x0∈(0,3),使得f(x0)是f(x)在[0,3]上的最值,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(1)若曲線
在
和
處的切線相互平行,求
的值;
(2)試討論
的單調(diào)性;
(3)設(shè)
,對任意的
,均存在
,使得
.試求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(
為自然對數(shù)的底數(shù)),
(
為常數(shù)),
是實數(shù)集
上的奇函數(shù).
(1)求證:
;
(2)討論關(guān)于
的方程:
的根的個數(shù);
(3)設(shè)
,證明:
(
為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)函數(shù)
.
(1)當
時,求曲線
在
處的切線方程;
(2)當
時,求函數(shù)
的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè)函數(shù)
,若對于
[1,2],
[0,1],使
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知函數(shù)
在
上可導(dǎo),其導(dǎo)函數(shù)為
,若
滿足:
,
,則下列判斷一定正確的是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知可導(dǎo)函數(shù)
的導(dǎo)函數(shù)
滿足
>
,則不等式
的解集是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
定義:如果函數(shù)
在區(qū)間
上存在
,滿足
則稱函數(shù)
在區(qū)間
上的一個雙中值函數(shù),已知函數(shù)
是區(qū)間
上的雙中值函數(shù),則實數(shù)
的取值范圍是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
記定義在R上的函數(shù)
的導(dǎo)函數(shù)為
.如果存在
,使得
成立,則稱
為函數(shù)
在區(qū)間
上的“中值點”.那么函數(shù)
在區(qū)間[-2,2]上的“中值點”為
____.
查看答案和解析>>