已知函數(shù)為自然對數(shù)的底數(shù)),為常數(shù)),是實(shí)數(shù)集上的奇函數(shù).
(1)求證:;
(2)討論關(guān)于的方程:的根的個數(shù);
(3)設(shè),證明:為自然對數(shù)的底數(shù)).
(1)證明詳見解析.(2);.(3)證明詳見解析.

試題分析:(1)構(gòu)造函數(shù),求出>0時x的取值,即函數(shù)h(x)的單調(diào)增區(qū)間,時x的取值,即函數(shù)h(x)的單調(diào)減區(qū)間,可得即可.(2)由 上的奇函數(shù)可得,構(gòu)造函數(shù),根據(jù)導(dǎo)數(shù)的性質(zhì)求出函數(shù)的單調(diào)區(qū)間,函數(shù)的最大值為,然后再根據(jù)直線y=m與函數(shù)的交點(diǎn)個數(shù)判斷原方程根的個數(shù)情況.(3)由(1)知,令,
試題解析:(1)證:令,令
時,.  ∴
 即.   4分
(2)為R上的奇函數(shù),

   8分

。
(3)由(1)知,令,則,所以原式=++···++1,然后用縮放法證明即可.
于是,
=++···++1
++···++1=    .12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)上是減函數(shù),求實(shí)數(shù)a的最小值;
(Ⅲ)若,使)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的反函數(shù)為,設(shè)的圖象上在點(diǎn)處的切線在y軸上的截距為,數(shù)列{}滿足: 
(Ⅰ)求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)在數(shù)列中,僅最小,求的取值范圍;
(Ⅲ)令函數(shù)數(shù)列滿足,求證:對一切n≥2的正整數(shù)都有 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè),證明:對任意,總存在,使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(1)若函數(shù)存在極值點(diǎn),求實(shí)數(shù)b的取值范圍;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時,令(),()為曲線y=上的兩動點(diǎn),O為坐標(biāo)原點(diǎn),能否使得是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊中點(diǎn)在y軸上?請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間及的取值范圍;
(Ⅱ)若函數(shù)有兩個極值點(diǎn)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知實(shí)數(shù)函數(shù)為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間及最小值;
(Ⅱ)若對任意的恒成立,求實(shí)數(shù)的值;
(Ⅲ)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線在點(diǎn)處的切線方程為________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,則等于            .

查看答案和解析>>

同步練習(xí)冊答案