精英家教網(wǎng)如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面AA1B1B⊥底面ABC,側(cè)棱AA1與底面ABC成60°的角,AA1=2.底面ABC是邊長為2的正三角形,其重心為G點,E是線段BC1上一點,且BE=
13
BC1
(1)求證:GE∥側(cè)面AA1BB;
(2)求平面B1GE與底面ABC所成銳二面角的正切值.
分析:(1)欲證GE∥側(cè)面AA1B1B,根據(jù)直線與平面平行的判定定理可知只需證GE與側(cè)面AA1B1B 內(nèi)一直線平行,延長B1E交BC于F,而GE∥AB1,GE?側(cè)面AA1B1B,AB1?側(cè)面AA1B1B,滿足定理的條件;
(2)過B1作B1H⊥AB,垂足為H,在底面ABC內(nèi),過H作HT⊥AF,垂足為T,連B1T,根據(jù)二面角平面角的定義可知∠B1TH為所求二面角的平面角,在Rt△B1HT中求出此角的正切值即可.
解答:解:(1)延長B1E交BC于F,
∵△B1EC1∽△FEB,BE=
1
2
EC1
∴BF=
1
2
B1C1=
1
2
BC,從而F為BC的中點. (2分)
∵G為△ABC的重心,
∴A、G、F三點共線,且=
FG
FA
=
FE
FB1
=
1
3
,
∴GE∥AB1,
又GE?側(cè)面AA1B1B,AB1?側(cè)面AA1B1B,
∴GE∥側(cè)面AA1B1B (4分)
(2)在側(cè)面AA1B1B內(nèi),過B1作B1H⊥AB,垂足為H,
∵側(cè)面AA1B1B⊥底面ABC,
∴B1H⊥底面ABC.又側(cè)棱AA1與底面ABC成60°的角,AA1=2,
∴∠B1BH=60°,BH=1,B1H=
3
(6分)
在底面ABC內(nèi),過H作HT⊥AF,垂足為T,連B1T.由三垂線定理有B1T⊥AF,又平面B1GE與底面ABC的交線為AF,
∴∠B1TH為所求二面角的平面角(8分)
∴AH=AB+BH=3,∠HAT=30°,
∴HT=AHsin30°=
3
2
,
在Rt△B1HT中,tan∠B1TH=
B1H
HT
=
2
3
3
(10分)
從而平面B1GE與底面ABC所成銳二面角的大小為arctan
2
3
3
(12分).
點評:本題主要考查了直線與平面平行的判定,以及二面角的度量等基礎知識,考查空間想象能力,運算能力和推理論證能力,屬于中檔題,本題解題的關鍵是找出二面角的平面角,放在一個可解的三角形中解出結果.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在斜三棱柱ABC-A1B1C1中,∠A1AB=∠A1AC,AB=AC,A1A=A1B=a,側(cè)面B1BCC1與底面ABC所成的二面角為120°,E、F分別是棱B1C1、A1A的中點
(Ⅰ)求A1A與底面ABC所成的角;
(Ⅱ)證明A1E∥平面B1FC;
(Ⅲ)求經(jīng)過A1、A、B、C四點的球的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在斜三棱柱ABC-A1B1C1中,AC=BC,AC⊥BC.側(cè)面A1ABB1是邊長為a的菱形,且垂直于底面ABC,∠A1AB=60°,E,F(xiàn)分別是AB1,BC的中點.  
(1)求證:直線EF∥平面A1ACC1;   
(2)在線段AB上確定一點G,使平面EFG⊥平面ABC,并給出證明;  
(3)記三棱錐A-BCE的體積為V,且V∈[
32
,12]
,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,又BC1⊥AC,過C1作C1H⊥底面ABC,垂足為H,則點H一定在( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•武漢模擬)如圖,在斜三棱柱ABC-A1B1C1中 AB=BC=2,∠ABC=120°,又頂點A1在底面ABC上的射影落在AC上,側(cè)棱AA1與底面成60°的角,D為AC的中點.
(1)求證:AA1⊥BD;
(2)若面A1DB⊥面DC1B,求側(cè)棱AA1之長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•武漢模擬)如圖,在斜三棱柱ABC-A'B'C'中,∠ABC=90°,則側(cè)面A'ACC'⊥側(cè)面ABC,又AA'和底面所成60°的角,且AA'=2a,AB=BC=
2
a

(1)求平面ABB'A'與底面ABC所成的角的正切值;
(2)求側(cè)面BB'C'C的面積.

查看答案和解析>>

同步練習冊答案