已知函數(shù)y=f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),且當(dāng)x∈(-∞,0)時,xf′(x)<f(x)成立(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a=
3
f(
3
),b=f(1),c=(log2
1
4
)f(log2
1
4
),則a,b,c的大小關(guān)系是 (  )
A、c>a>b
B、c>b>a
C、a>b>c
D、a>c>b
考點(diǎn):函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)條件構(gòu)造函數(shù),利用函數(shù)的奇偶性和單調(diào)性之間的關(guān)系,即可得到結(jié)論.
解答: 解:∵函數(shù)y=f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),
∴當(dāng)x∈(-∞,0)時,xf′(x)<f(x)等價為xf′(x)+f(x)<0,
構(gòu)造函數(shù)g(x)=xf(x),
則g′(x)=xf′(x)+f(x)<0,
∴當(dāng)x∈(-∞,0)時,函數(shù)g(x)單調(diào)遞減,
且函數(shù)g(x)是偶函數(shù),
∴當(dāng)x∈(0,+∞)時,函數(shù)g(x)單調(diào)遞增,
則a=
3
f(
3
)=g(
3
),b=f(1)=g(1),c=(log2
1
4
)f(log2
1
4
)=g(log2
1
4
)=g(-2)=g(2),
∵1
3
<2,
∴g(1)<g(
3
)<g(2),
即b<a<c,
故選:A.
點(diǎn)評:本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)的奇偶性構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)表示相同函數(shù)的是
 

(1)y=x與y=
x2
    
(2)y=x與y=(
x
2   
(3)y=
3x3
與y=
x2

(4)y=
x
+1與y=
x+2
x
+1
  
(5)y=
x2-1
與y=
x-1
x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列命題的正確性,并把所有正確命題的序號都填在橫線上
 

①若直線a∥直線b,b?平面α,則直線a∥平面α
②在正方體內(nèi)任意畫一條線段l,則該正方體的一個面上總存在直線與線段l垂直
③若平面β⊥平面α,平面γ⊥α,則平面β∥平面γ
④若直線a⊥平面α,直線b∥平面α,則直線b⊥直線a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是
 

①6名學(xué)生爭奪3項(xiàng)冠軍,冠軍的獲得情況共有36種.
②若x,y∈R,i為虛數(shù)單位,且(x-2)i-y=-1+i,則(1+i)x+y的值為-4.
③|r|≤1,并且|r|越接近1,線性相關(guān)程度越弱;|r|越接近0,線性相關(guān)程度越強(qiáng).
④在獨(dú)立性檢驗(yàn)時,兩個變量的2×2列聯(lián)表中對角線上數(shù)據(jù)的乘積相差越大,說明這兩個變量沒有關(guān)系成立的可能性就越大
⑤在做回歸分析時,殘差圖中殘差點(diǎn)分布的帶狀區(qū)域的寬度越窄相關(guān)指數(shù)越小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y是滿足2x+y=20的正數(shù),則lgx+lg2y的最大值是( 。
A、50B、2C、1+lg5D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題錯誤的是( 。
A、命題“若lgx=0,則x=1”的逆否命題為“若x≠1,則lgx≠0”
B、命題“若x>2,則
1
x
1
2
”的否命題是“若x>2,則
1
x
1
2
C、雙曲線
x2
9
-
y2
16
=1的漸近線方程為y=±
4
3
x
D、若p∧q為假命題,則p與q中至少有一個為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
=(1,2),
b
=(1,1)且
a
a
b
的夾角為銳角,則實(shí)數(shù)λ的取值范圍是( 。
A、(-
5
3
,0)∪(0,+∞)
B、(-
5
3
,+∞)
C、[-
5
3
,0)∪(0,+∞)
D、(-
5
3
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={y|y=zx},N={x|y=
2x-x2
},則M∩N=(  )
A、∅
B、{x|0<x≤2}
C、{x|0<x≤1}
D、{x|x>0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=
32-2x
的定義域?yàn)椋ā 。?/div>
A、(0,+∞)
B、(5,+∞)
C、(-∞,5]
D、(-∞,5)∪(5,+∞)

查看答案和解析>>

同步練習(xí)冊答案