設(shè)函數(shù)f(x)=mx2-mx-6+m
(1)若對于m∈[1,2],f(x)<0恒成立,求實數(shù)x的取值范圍;
(2)若對于x∈[1,2],f(x)<0恒成立,求實數(shù)m的取值范圍.
分析:(1)分離參數(shù)m,得m(x2-x+1)-6<0,只需求
1×(x 2-x+1)-6<0
2×(x 2-x+1)-6<0
的解集即可;
(2)分離參數(shù)m,得m<
6
x 2-x+1
,只需求
6
x 2-x+1
在x∈[1,2],上的最小值即可.
解答:解:(1)∵mx2-mx-6+m<0,∴m(x2-x+1)-6<0,
對于m∈[1,2],f(x)<0恒成立?
1×(x 2-x+1)-6<0
2×(x 2-x+1)-6<0

解得:-1<x<2,
∴實數(shù)x的取值范圍:-1<x<2,
(2))∵mx2-mx-6+m<0,,∴m(x2-x+1)-6<0,
對于x∈[1,2],f(x)<0恒成立?m<
6
x 2-x+1

?m<
6
x 2-x+1
在x∈[1,2],上的最小值
由于
6
x 2-x+1
在x∈[1,2],上的最小值是:2
∴m<2
∴實數(shù)m的取值范圍:m<2.
點評:此題考查求參數(shù)范圍,一般用分離參數(shù)法,進而求函數(shù)的值域.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

4、設(shè)函數(shù)f(x)=x2+mx(x∈R),則下列命題中的真命題是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,已知O為坐標原點,點A的坐標為(a,b),點B的坐標為(cosωx,sinωx),其中a2+b2≠0且ω>0.設(shè)f(x)=
OA
OB

(1)若a=
3
,b=1,ω=2,求方程f(x)=1在區(qū)間[0,2π]內(nèi)的解集;
(2)若點A是過點(-1,1)且法向量為
n
=(-1,1)
的直線l上的動點.當x∈R時,設(shè)函數(shù)f(x)的值域為集合M,不等式x2+mx<0的解集為集合P.若P⊆M恒成立,求實數(shù)m的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)f(x)的性質(zhì)取決于變量a、b和ω的值.當x∈R時,試寫出一個條件,使得函數(shù)f(x)滿足“圖象關(guān)于點(
π
3
,0)
對稱,且在x=
π
6
處f(x)取得最小值”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(選修4-5:不等式選講)
設(shè)函數(shù)f(x)=mx-2+|2x-1|.
(1)若m=2,解不等式f(x)≤3;
(2)若函數(shù)f(x)有最小值,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
mx+2
x-1
的圖象關(guān)于點(1,1)對稱.
(1)求m的值;
(2)若直線y=a(a∈R)與f(x)的圖象無公共點,且f(|t-2|+
3
2
)<2a+f(4a),求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=mx2-mx-1.
(1)若對于一切實數(shù)x,f(x)<0恒成立,求m的取值范圍;
(2)對于x∈[1,3],f(x)>-m+x-1恒成立,求m的取值范圍.

查看答案和解析>>

同步練習冊答案