4.現(xiàn)有如表樣本數(shù)據(jù):
x2324252627
y20.923.125.126.929
經(jīng)計(jì)算可知y對(duì)x呈線性相關(guān)關(guān)系:
試求:(1)線性回歸方程y=bx+a;
            (2)估計(jì)x為何值時(shí),y=100.

分析 (1)由題意求出$\overline{x}$,$\overline{y}$,$\sum_{i=1}^{5}{x}_{i}^{2}$,$\sum_{i=1}^{5}{x}_{i}{y}_{i}$,代入公式求值,從而得到回歸直線方程;
(2)當(dāng)y=100時(shí),求解x的值即可.

解答 解:(1)由題中數(shù)據(jù)可得$\overline{x}$=25,$\overline{y}$=24.6,
∴$\sum _{i=1}^{6}$(xi-$\overline{x}$)(yi-$\overline{y}$)=(-2)×(-3.7)+(-1)×(-1.5)+0+1×2.3+2×4.4=20.
$\sum _{i=1}^{6}$ (xi-$\overline{x}$)2=4+1+0+1++4=10,
∴$\hat$=$\frac{20}{10}=2$.
∴$\hat{a}$=24.6-2×25=-25.4
∴線性回歸方程y=2x-25.4
(2)當(dāng)y=100時(shí),即100=2x-25.4
此時(shí)x=62.7.
∴x=62.7時(shí),y=100.

點(diǎn)評(píng) 本題考查線性回歸方程的求法,考查最小二乘法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)a=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx,則(a$\sqrt{x}$+$\frac{1}{x}$)6展開式中的常數(shù)項(xiàng)為240.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖,在三棱柱ABC-A1B1C1中,底面ABC是邊長(zhǎng)為2的等邊三角形,點(diǎn)A1在底面ABC上的投影D恰好為BC的中點(diǎn),AA1與平面ABC所成角為45°,則該三棱柱的體積為( 。
A.1B.$\sqrt{2}$C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知圓錐的表面積為am2,且它的側(cè)面展開圖是一個(gè)半圓,則這個(gè)圓錐的底面半徑為$\sqrt{\frac{a}{3π}}$ m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.復(fù)數(shù)z滿足z=$\overline{z}$+$\frac{1+i}{1-i}$,其中$\overline{z}$為z的共軛復(fù)數(shù),則z的虛部是( 。
A.1B.iC.$\frac{1}{2}$D.$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若復(fù)數(shù)z滿足|z+3+i|=$\sqrt{2}$,則|z|的最大值為( 。
A.3+$\sqrt{2}$B.$\sqrt{10}$+$\sqrt{2}$C.$\sqrt{5}$+$\sqrt{2}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某市春節(jié)期間7家超市廣告費(fèi)支出xi(萬(wàn)元)和銷售額yi(萬(wàn)元)數(shù)據(jù)如下:
超市ABCDEFG
廣告費(fèi)支出xi1246111319
銷售額yi19324044525354
(1)若用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程;
(2)用二次函數(shù)回歸模型擬合y與x的關(guān)系,可得回歸方程:$\stackrel{∧}{y}$=-0.17x2+5x+20,經(jīng)計(jì)算二次函數(shù)回歸模型和線性回歸模型的R2分別約為0.93和0.75,請(qǐng)用R2說(shuō)明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測(cè)A超市廣告費(fèi)支出為3萬(wàn)元時(shí)的銷售額.參數(shù)數(shù)據(jù)及公式:$\overline{x}$=8,$\overline{y}$=42,$\sum_{i=1}^{7}$xiyi=2794,$\sum_{i=1}^{7}$xi2=708,
(3)用函數(shù)擬合解決實(shí)際問(wèn)題,這過(guò)程通過(guò)了收集數(shù)據(jù),畫散點(diǎn)圖,選擇函數(shù)模型,求函數(shù)表達(dá)式,檢驗(yàn),不符合重新選擇函數(shù)模型,符合實(shí)際,就用函數(shù)模型解決實(shí)際問(wèn)題,寫出這過(guò)程的流程圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.6個(gè)人分乘兩輛不同的汽車,每輛車最多坐4人,則不同的乘車方法數(shù)為( 。
A.35B.50C.70D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若角α的終邊在直線y=-2x上,則sin α等于( 。
A.±$\frac{1}{5}$B.±$\frac{\sqrt{5}}{5}$C.±$\frac{2\sqrt{5}}{5}$D.±$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案