【題目】用半徑為R的圓鐵皮剪一個內接矩形,再以內接矩形的兩邊分別作為圓柱的高與底面半徑,則圓柱的體積最大時,該圓鐵皮面積與其內接矩形的面積比為(
A.
B.
C.
D.

【答案】C
【解析】解:設圓柱的高為x,則其為內接矩形的一邊長,那么另一邊長為y=2 , ∴圓柱的體積V(X)=πy2x= =π(﹣x3+4R2x),(0<x<2R),
∴V′(x)=π(﹣3x2+4R2),
列表如下:

x

(0,

,2R)

V′(x)

+

0

∴當x= 時,此圓柱體積最大.
∴圓柱體體積最大時,該圓內接矩形的兩條邊長分別為 和2 = ,
∴圓柱的體積最大時,該圓鐵皮面積與其內接矩形的面積比為:
=
故選:C.
設圓柱的高為x,則其為內接矩形的一邊長,那么另一邊長為y=2 ,利用導數(shù)性質求出當x= 時,此圓柱體積最大.由此能求出圓柱的體積最大時,該圓鐵皮面積與其內接矩形的面積比.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】點M(3,2)到拋物線C:y=ax2(a>0)準線的距離為4,F(xiàn)為拋物線的焦點,點N(l,l),當點P在直線l:x﹣y=2上運動時, 的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (a,b∈R,且a≠0,e為自然對數(shù)的底數(shù)).
(1)若曲線f(x)在點(e,f(e))處的切線斜率為0,且f(x)有極小值,求實數(shù)a的取值范圍.
(2)①當 a=b=l 時,證明:xf(x)+2<0; ②當 a=1,b=﹣1 時,若不等式:xf(x)>e+m(x﹣1)在區(qū)間(1,+∞)內恒成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若偶函數(shù)f(x)在(﹣∞,0]上單調遞減,a=f(log23),b=f(log45),c=f(2 ),則a,b,c滿足(
A.a<b<c
B.b<a<c
C.c<a<b
D.c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù),則不等式的解集是_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面直角坐標系xOy中,以O為極點,x軸的非負半軸為極軸建立極坐標系,P點的極坐標為(3, ).曲線C的參數(shù)方程為ρ=2cos(θ﹣ )(θ為參數(shù)).
(Ⅰ)寫出點P的直角坐標及曲線C的直角坐標方程;
(Ⅱ)若Q為曲線C上的動點,求PQ的中點M到直線l:2ρcosθ+4ρsinθ= 的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,直線l:y=x+2與以原點為圓心、橢圓C的短半軸為半徑的圓O相切.
(1)求橢圓C的方程;
(2)過橢圓C的左頂點A作直線m,與圓O相交于兩點R,S,若△ORS是鈍角三角形,求直線m的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】f(x)是定義在(0,+∞)上的單調增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1,當f(x)+f(x-8)≤2時,x的取值范圍是(  )

A. (8,+∞) B. (8,9] C. [8,9] D. (0,8)

查看答案和解析>>

同步練習冊答案