【題目】已知平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,P點(diǎn)的極坐標(biāo)為(3, ).曲線C的參數(shù)方程為ρ=2cos(θ﹣ )(θ為參數(shù)).
(Ⅰ)寫出點(diǎn)P的直角坐標(biāo)及曲線C的直角坐標(biāo)方程;
(Ⅱ)若Q為曲線C上的動點(diǎn),求PQ的中點(diǎn)M到直線l:2ρcosθ+4ρsinθ= 的距離的最小值.

【答案】解:(Ⅰ)由P點(diǎn)的極坐標(biāo)為(3, ),∴xP=3 = ,yP=3 = , ∴點(diǎn)P的直角坐標(biāo)為
曲線C的參數(shù)方程為ρ=2cos(θ﹣ )(θ為參數(shù)),展開可得:ρ2= (ρcosθ+ρsinθ),
∴x2+y2= x+ y,
配方為: + =1.
(Ⅱ)直線l:2ρcosθ+4ρsinθ= 的直角坐標(biāo)方程為::2x+4y=
設(shè)Q ,則M ,
則點(diǎn)M到直線l的距離d= = = ,當(dāng)且僅當(dāng)sin(θ+φ)=﹣1時取等號.
∴點(diǎn)M到直線l:2ρcosθ+4ρsinθ= 的距離的最小值是
【解析】(Ⅰ)由P點(diǎn)的極坐標(biāo)為(3, ),利用 可得點(diǎn)P的直角坐標(biāo).曲線C的參數(shù)方程為ρ=2cos(θ﹣ )(θ為參數(shù)),展開可得:ρ2= (ρcosθ+ρsinθ),利用 及其ρ2=x2+y2即可得出直角坐標(biāo)方程.(Ⅱ)直線l:2ρcosθ+4ρsinθ= 的直角坐標(biāo)方程為::2x+4y= .設(shè)Q ,則M ,利用點(diǎn)到直線的距離公式與三角函數(shù)的單調(diào)性值域即可得出.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果函數(shù)y=f(x)的定義域?yàn)镽,對于定義域內(nèi)的任意x,存在實(shí)數(shù)a使得f=f(x+a)=f(﹣x)成立,則稱此函數(shù)具有“P(a)性質(zhì)”;
(1)判斷函數(shù)y=sinx是否具有“P(a)性質(zhì)”,若具有“P(a)性質(zhì)”,試寫出所有a的值;若不具有“P(a)性質(zhì)”,請說明理由;
(2)已知y=f(x)具有“P(0)性質(zhì)”,當(dāng)x≤0時,f(x)=(x+t)2 , t∈R,求y=f(x)在[0,1]上的最大值;
(3)設(shè)函數(shù)y=g(x)具有“P(±1)性質(zhì)”,且當(dāng)﹣ ≤x≤ 時,g(x)=|x|,求:當(dāng)x∈R時,函數(shù)g(x)的解析式,若y=g(x)與y=mx(m∈R)交點(diǎn)個數(shù)為1001個,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面ADC∥平面A1B1C1 , B為線段AD的中點(diǎn),△ABC≈△A1B1C1 , 四邊形ABB1A1為正方形,平面AA1C1C丄平面ADB1A1 , A1C1=A1A,∠C1A1A= ,M為棱A1C1的中點(diǎn).
(Ⅰ)若N為線段DC1上的點(diǎn),且直線MN∥平面ADB1A1 , 試確定點(diǎn)N的位置;
(Ⅱ)求平面MAD與平面CC1D所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用半徑為R的圓鐵皮剪一個內(nèi)接矩形,再以內(nèi)接矩形的兩邊分別作為圓柱的高與底面半徑,則圓柱的體積最大時,該圓鐵皮面積與其內(nèi)接矩形的面積比為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺ABC﹣A1B1C1中,CC1⊥平面ABC,AB=2A1B1=2CC1 , M,N分別為AC,BC的中點(diǎn).
(1)求證:AB1∥平面C1MN;
(2)若AB⊥BC且AB=BC,求二面角C﹣MC1﹣N的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用半徑為R的圓鐵皮剪一個內(nèi)接矩形,再以內(nèi)接矩形的兩邊分別作為圓柱的高與底面半徑,則圓柱的體積最大時,該圓鐵皮面積與其內(nèi)接矩形的面積比為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(I)求,的值;

(II)求;

(III)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題共14分)

如圖,在四棱錐中, 平面,底面是菱形, .

()求證: 平面

)若所成角的余弦值;

)當(dāng)平面與平面垂直時,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于區(qū)間[a,b](a<b),若函數(shù)同時滿足:①在[a,b]上是單調(diào)函數(shù),②函數(shù)在[a,b]的值域是[a,b],則稱區(qū)間[a,b]為函數(shù)的“保值”區(qū)間

(1)求函數(shù)的所有“保值”區(qū)間

(2)函數(shù)是否存在“保值”區(qū)間?若存在,求的取值范圍,若不存在,說明理由

查看答案和解析>>

同步練習(xí)冊答案