11.秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入n,x的值分別為4,3,則輸出v的值為(  )
A.20B.61C.183D.548

分析 由題意,模擬程序的運行,依次寫出每次循環(huán)得到的i,v的值,當i=-1時,不滿足條件i≥0,跳出循環(huán),輸出v的值為183.

解答 解:初始值n=4,x=3,程序運行過程如下表所示:
v=1
i=3 v=1×3+3=6
i=2 v=6×3+2=20
i=1 v=20×3+1=61
i=0 v=61×3+0=183
i=-1 跳出循環(huán),輸出v的值為183.
故選:C.

點評 本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫出每次循環(huán)得到的i,v的值是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.用反證法證明命題“設(shè)a,b為實數(shù),則函數(shù)f(x)=x3+ax+b至少有一個極值點”時,要作的假設(shè)是( 。
A.函數(shù)f(x)=x3+ax+b恰好有兩個極值點B.函數(shù)f(x)=x3+ax+b至多有兩個極值點
C.函數(shù)f(x)=x3+ax+b沒有極值點D.函數(shù)f(x)=x3+ax+b至多有一個極值點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=$\frac{{lg\sqrt{x}}}{{lg(10{x^2})}}$,x∈(10-2,104)且x≠$\frac{{\sqrt{10}}}{10}$的值域為(-∞,$\frac{2}{9}$)∪($\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若$\overrightarrow{a}$=(-8,1),$\overrightarrow$=(3,4),則$\overrightarrow{a}$在$\overrightarrow$方向上的射影是-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)點P是曲線y=2x2上的一個動點,曲線y=2x2在點P處的切線為l,過點P且與直線l垂直的直線與曲線y=2x2的另一交點為Q,則PQ的最小值為$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.數(shù)列{an}的前n項和是Sn,a1=5,且an=Sn-1(n=2,3,4,…).
(1)求Sn;
(2)求數(shù)列{an}的通項公式;
(3)求證:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$<$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=$\frac{{-{x^2}+x-4}}{x}$(x>0)的最大值為-3,此時x的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與y=$\sqrt{3}$x-1平行,且它的一個焦點在拋物線y2=8$\sqrt{2}$x的準線上,則雙曲線的方程為$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)y=f(x)是定義在(0,+∞)上的減函數(shù),并且滿足f(2)=1,f($\frac{x}{y}$)=f(x)-f(y).
(1)求f(1)和f($\frac{1}{4}$)的值;
(2)如果f(3x)+f(3x-2)<3,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案