分析 觀察已知式子的規(guī)律,并改寫形式,歸納可得N(n,k)=$\frac{k-2}{2}$n2+$\frac{4-k}{2}$n,把n=20,k=15代入可得答案.
解答 解:原已知式子可化為:N(n,3)=$\frac{1}{2}$n2+$\frac{1}{2}$n=$\frac{3-2}{2}{n}^{2}+\frac{4-3}{2}n$,
N(n,4)=n2=$\frac{4-2}{2}{n}^{2}+\frac{4-4}{2}n$,
N(n,5)=$\frac{3}{2}$n2-$\frac{1}{2}$n=$\frac{5-2}{2}{n}^{2}+\frac{4-5}{2}n$,
N(n,6)=2n2-n=$\frac{6-2}{2}{n}^{2}+\frac{4-6}{2}n$,
由歸納推理可得N(n,k)=$\frac{k-2}{2}$n2+$\frac{4-k}{2}$n,
故N(20,15)=$\frac{15-2}{2}×{20}^{2}+\frac{4-15}{2}×20$=2490,
故答案為:2490
點評 歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想).
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{π}{2}$ | C. | π | D. | $\frac{3π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com