已知p:Φ
?
{0},q:{2}∈{1,2,3}
由他們構(gòu)成的新命題:“﹁p”,“﹁q”,“p∧q”,“p∨q”中,真命題有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)
分析:首先判斷p和q的真假,再由真值表判斷符合命題的真假即可.因?yàn)?#8709;是任何集合的真子集,故p為真命題;q中為兩個(gè)集合的關(guān)系,不能用∈,故q為假命題.
解答:解:由題意,p真q假,故:“﹁p”假,“﹁q”真,“p∧q”假,“p∨q”真,
所以:“﹁p”,“﹁q”,“p∧q”,“p∨q”中真命題有2個(gè)
故選B
點(diǎn)評:本題考查命題和復(fù)合命題的真假判斷,屬基礎(chǔ)知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知p>0,動(dòng)點(diǎn)M到定點(diǎn)F(
p
2
, 0)
的距離比M到定直線l:x=-p的距離小
p
2

(I)求動(dòng)點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)A,B是軌跡C上異于原點(diǎn)O的兩個(gè)不同點(diǎn),
OA
OB
=0
,求△AOB面積的最小值;
(Ⅲ)在軌跡C上是否存在兩點(diǎn)P,Q關(guān)于直線m:y=k(x-
p
2
)(k≠0)
對稱?若存在,求出直線m的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:0<k<2,q:方程
x2
k-1
+
y2
k-3
=1
表示雙曲線,若p∧q為真命題,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P={x|0≤x≤4},Q={y|0≤y≤2},下列不表示從P到Q的映射的是
 

f:x→y=
x
2

f:x→y=
x
3

f:x→y=
3x
2

f:x→y=
2x
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:“0<x<3”,q:“-3<x<3”,則p是q( 。

查看答案和解析>>

同步練習(xí)冊答案