設(shè)
a
=(-
3
2
,cosωx),
b
=(1,
3
cosωx-sinωx)(ω>0),f(x)=
a
b
,若f(x)的最小正周期是π.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)在區(qū)間[
π
12
,
12
]上的值域.
考點:三角函數(shù)中的恒等變換應(yīng)用,平面向量數(shù)量積的坐標(biāo)表示、模、夾角,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì),平面向量及應(yīng)用
分析:(Ⅰ)首先利用向量的數(shù)量積對三角函數(shù)的關(guān)系式進行三角恒等變換,把三角函數(shù)變形成余弦型函數(shù),進一步利用函數(shù)的周期求出函數(shù)的解析式.
(Ⅱ)直接利用上步的結(jié)論,利用函數(shù)的定義域求出函數(shù)的值域.
解答: 解:(Ⅰ)已知:
a
=(-
3
2
,cosωx),
b
=(1,
3
cosωx-sinωx)(ω>0),
則:f(x)=
a
b
=
3
cos2ωx-sinωxcosωx
-
3
2

=
3
(cos2ωx+1)
2
-
sin2ωx
2
-
3
2

=cos2ωxcos
π
6
-sin2ωxsin
π
6

=cos(2ωx+
π
6
)

若f(x)的最小正周期是π
所以:T=

解得:ω=1
(Ⅱ)由(Ⅰ)得:f(x)=cos(2x+
π
6
)

由于:x∈[
π
12
12
]

所以:2x+
π
6
∈[
π
3
,
3
]

所以:函數(shù)f(x)的值域為:[-1,
1
2
]
點評:本題考查的知識要點:利用向量的數(shù)量積對三角函數(shù)進行恒等變換,利用函數(shù)的周期求函數(shù)的解析式,利用函數(shù)的定義域求函數(shù)的值域.屬于基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求導(dǎo)數(shù)f(x)=2-2sin2
x
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形么BDC內(nèi)接于圓,BD=CD,過C點的圓的切線與AB的延長線交于E點.
(I)求證:∠EAC=2∠DCE;
(Ⅱ)若BD⊥AB,BC=BE,AE=2,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosx,sin
x
2
)
b
=(0,cos
x
2
)
,x∈R,若函數(shù)f(x)=2+sinx-|a-b|2,且函數(shù)g(x)的圖象與函數(shù)f(x)的圖象關(guān)于原點成中心對稱.
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)若h(x)=g(x)-λf(x)+1在x∈[-
π
2
,
π
2
]上是增函數(shù),求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在半圓O中,C是圓O上一點,直徑AB⊥CD,垂足為D,DE⊥BC,垂足為E,若AB=6,AD=1,則CE•BC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某個幾何體的三視圖如圖,則這個幾何體的表面積為(  )
A、4+
6
B、4+2
6
C、6
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系xoy中,點P(x,y),Q(x,-2),且以線段PQ為直徑的圓經(jīng)過原點O.
(1)求動點P的軌跡C;
(2)過點M(0,-2)的直線l與軌跡C交于兩點A、B,點A關(guān)于y軸的對稱點為A′,試問直線A′B是否恒過一定點,若是,并求此定點;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3
(1)若函數(shù)在區(qū)間[-1,1]上存在零點,求實數(shù)q的取值范圍;
(2)是否存在常數(shù)t(t≥0),當(dāng)t∈[t,10]時,f(x)的值域為區(qū)間D,且區(qū)間D的長度為12-t(視區(qū)間[a,b]的長度為b-a),若存在,求出所有滿足條件的t,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的前n項和為Sn,已知a1=2014,且an+2an+1+an+2=0(n∈N*),則S2014=( 。
A、2013B、2014
C、1D、0

查看答案和解析>>

同步練習(xí)冊答案