【題目】某地區(qū)今年1月,2月,3月患某種傳染病的人數(shù)分別為42,48,52.為了預(yù)測以后各月的患病人數(shù),甲選擇了模型,乙選擇了模型,其中為患病人數(shù),為月份數(shù),a,b,c,p,q,r都是常數(shù).結(jié)果4月,5月,6月份的患病人數(shù)分別為54,57,58.
(1)求a,b,c,p,q,r的值;
(2)你認(rèn)為誰選擇的模型好.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x,g(x)=(4﹣lnx)lnx+b(b∈R).
(1)若f(x)>0,求實數(shù)x的取值范圍;
(2)若存在x1,x2∈[1,+∞),使得f(x1)=g(x2),求實數(shù)b的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地擬規(guī)劃種植一批芍藥,為了美觀,將種植區(qū)域(區(qū)域I)設(shè)計成半徑為1km的扇形,中心角().為方便觀賞,增加收入,在種植區(qū)域外圍規(guī)劃觀賞區(qū)(區(qū)域II)和休閑區(qū)(區(qū)域III),并將外圍區(qū)域按如圖所示的方案擴建成正方形,其中點,分別在邊和上.已知種植區(qū)、觀賞區(qū)和休閑區(qū)每平方千米的年收入分別是10萬元、20萬元、20萬元.
(1)要使觀賞區(qū)的年收入不低于5萬元,求的最大值;
(2)試問:當(dāng)為多少時,年總收入最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某支上市股票在30天內(nèi)每股的交易價格(單位:元)與時間(單位:天)組成有序數(shù)對,點落在如圖所示的兩條線段上.該股票在30天內(nèi)(包括30天)的日交易量(單位:萬股)與時間(單位:天)的部分?jǐn)?shù)據(jù)如下表所示:
第天 | 4 | 10 | 16 | 22 |
(萬股) | 36 | 30 | 24 | 18 |
(Ⅰ)根據(jù)所提供的圖象,寫出該種股票每股的交易價格與時間所滿足的函數(shù)解析式;
(Ⅱ)根據(jù)表中數(shù)據(jù)確定日交易量與時間的一次函數(shù)解析式;
(Ⅲ)若用(萬元)表示該股票日交易額,請寫出關(guān)于時間的函數(shù)解析式,并求出在這30天中,第幾天的日交易額最大,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓,動圓與圓外切并且與圓內(nèi)切,圓心的軌跡為曲線.
(1)求曲線的方程;
(2)過點 作圓的兩條切線,切點分別為,求直線被曲線截得的弦的中點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解本市居民的生活成本,甲乙丙三名同學(xué)利用假期分別對三個社區(qū)進(jìn)行了“家庭每月日常消費額”的調(diào)查.他們將調(diào)查所得的數(shù)據(jù)分別繪制成頻率分布直方圖(如圖所示),記甲乙丙所調(diào)查數(shù)據(jù)的標(biāo)準(zhǔn)差分別為,,,則它們的大小關(guān)系為__________.
(甲)
(乙)
(丙)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知整數(shù)對排列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4)......則第60個整數(shù)對是( )
A.(5,7)B.(11,5)C.(7,5)D.(5,11)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com