分析 (1)在直角三角形OEP中$OP=\frac{PE}{sinθ}=\frac{R}{sinθ}$,即可用θ表示圓P的半徑R;
(2)令sinθ=t,0<t<1,利用導(dǎo)數(shù)的性質(zhì)能求出圓Q的半徑的最大值.
解答 解:(1)如圖,在直角三角形OEP中$OP=\frac{PE}{sinθ}=\frac{R}{sinθ}$…2分
因?yàn)榘霃綖?,所以O(shè)P+R=1,所以$R=\frac{sinθ}{1+sinθ}$…5分
(2)在直角三角形ODQ,OQ=$\frac{DQ}{sinθ}$=$\frac{r}{sinθ}$,OQ+r+2R=1,
∴$r=\frac{sinθ(1-sinθ)}{{{{(1+sinθ)}^2}}}$…10分
令$sinθ=t,(0<t<1),r=\frac{{t-{t^2}}}{{{{(1+t)}^2}}},r'=\frac{1-3t}{{{{(1+t)}^3}}}$
令$r'=0,t=\frac{1}{3}$$0<t<\frac{1}{3},r'>0;\frac{1}{3}<t<1,r'<0$
所以$t=\frac{1}{3}$時(shí),$r=\frac{1}{8}$…14分
答:存在θ為銳角,當(dāng)$sinθ=\frac{1}{3}$時(shí),圓Q半徑得最大值$\frac{1}{8}$.…15分.
點(diǎn)評 本題考查函數(shù)的求法,考查圓的半徑的最大值的求法,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A${\;}_{6}^{6}$ | B. | 2A${\;}_{3}^{3}$ | C. | A${\;}_{3}^{3}$A${\;}_{3}^{3}$ | D. | $A_3^3A_4^4$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,2014] | B. | [-1,1)∪(1,2014] | C. | (1,2015] | D. | [0,1)∪(1,2014] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等邊三角形 | B. | 腰長為a的等腰三角形 | ||
C. | 底邊長為a的等腰三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 8 | C. | 12或28 | D. | 8或32 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com