直線與實(shí)軸在軸上的雙曲線的交點(diǎn)在以原點(diǎn)為中心,邊長(zhǎng)為2且邊平行于坐標(biāo)軸的正方形內(nèi)部,那么的取值范圍是(   )

(A)。˙) (C)  。―)

(D)


解析:

將直線代入雙曲線求得,則有同理亦得,又對(duì)實(shí)軸在軸上的雙曲線有,故

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鷹潭一模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
.F1,F(xiàn)2分別為橢圓C的左,右焦點(diǎn),A1,A2分別為橢圓C的左,右頂點(diǎn).過右焦點(diǎn)F2且垂直于x軸的直線與橢圓C在第一象限的交點(diǎn)為M(
3
,2)

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線l:x=my+1與橢圓C交于P,Q兩點(diǎn),直線A1P與A2Q交于點(diǎn)S.當(dāng)直線l變化時(shí),點(diǎn)S是否恒在一條定直線上?若是,求此定直線方程;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高二數(shù)學(xué) 教學(xué)與測(cè)試 題型:044

根據(jù)下列條件,求中心在原點(diǎn),實(shí)軸、虛軸在坐標(biāo)軸上的雙曲線方程.

(1)焦點(diǎn)為(±5,0)且過點(diǎn)(,-3);

(2)P(0,6)與兩個(gè)焦點(diǎn)連線互相垂直,與兩個(gè)頂點(diǎn)連線夾角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江西省鷹潭市2012屆高三第一次模擬考試數(shù)學(xué)文科試題 題型:044

已知橢圓C:(a>b>0).F1,F(xiàn)2分別為橢圓C的左,右焦點(diǎn),A1,A2分別為橢圓C的左,右頂點(diǎn).過右焦點(diǎn)F2且垂直于x軸的直線與橢圓C在第一象限的交點(diǎn)為M(,2).

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)直線l:x=my+1與橢圓C交于P,Q兩點(diǎn),直線A1P與A2Q交于點(diǎn)S.當(dāng)直線l變化時(shí),點(diǎn)S是否恒在一條定直線上?若是,求此定直線方程;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C=1(ab>0),F1F2分別為橢圓C的左、右焦點(diǎn),A1、A2分別為橢圓C的左、右頂點(diǎn),過右焦點(diǎn)F2且垂直于x軸的直線與橢圓C在第一象限的交點(diǎn)為M(,2).

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)直線lxmy+1與橢圓C交于PQ兩點(diǎn),直線A1PA2Q交于點(diǎn)S.試問:當(dāng)直線l變化時(shí),點(diǎn)S是否恒在一條定直線上?若是,請(qǐng)寫出這條定直線的方程,并證明你的結(jié)論:若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年江西省鷹潭市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知橢圓.F1,F(xiàn)2分別為橢圓C的左,右焦點(diǎn),A1,A2分別為橢圓C的左,右頂點(diǎn).過右焦點(diǎn)F2且垂直于x軸的直線與橢圓C在第一象限的交點(diǎn)為M
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線l:x=my+1與橢圓C交于P,Q兩點(diǎn),直線A1P與A2Q交于點(diǎn)S.當(dāng)直線l變化時(shí),點(diǎn)S是否恒在一條定直線上?若是,求此定直線方程;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案