分析 (1)求出函數(shù)的導(dǎo)數(shù),求出導(dǎo)函數(shù)的導(dǎo)數(shù),求出導(dǎo)函數(shù)的單調(diào)區(qū)間,從而證明函數(shù)的單調(diào)性即可;
(2)求出函數(shù)的解析式,問題轉(zhuǎn)化為e2x>x2+x+1,由x2+x+1>0,得2x>ln(x2+x+1),設(shè)h(x)=2x-ln(x2+x+1),根據(jù)函數(shù)的單調(diào)性求出不等式的解集即可;
(3)令G(x)=e2x-2x2-3x,求出函數(shù)的導(dǎo)數(shù),設(shè)H(x)=e2x-2x-$\frac{3}{2}$,根據(jù)函數(shù)的單調(diào)性求出G(x)的最小值,從而求出a的最大值即可.
解答 解:(1)證明:f'(x)=2e2x-2x=2(e2x-x),
設(shè)g(x)=e2x-x,g'(x)=2e2x-1=0,${e^{2x}}=\frac{1}{2}$,$x=\frac{1}{2}ln\frac{1}{2}$,
x,g′(x),g(x)的變化如下:
x | (-∞,$\frac{1}{2}$ln$\frac{1}{2}$) | $\frac{1}{2}$ln$\frac{1}{2}$ | ($\frac{1}{2}$ln$\frac{1}{2}$,+∞) |
g′(x) | - | 0 | + |
g(x) | ↓ | 極小值 | ↑ |
x | (0,x0) | x0 | (x0,+∞) |
G′(x) | - | 0 | + |
G(x) | ↓ | 極小值 | ↑ |
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道綜合題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | -$\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 3 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
貸款期限 | 6個月 | 12個月 | 18個月 | 24個月 | 36個月 |
頻數(shù) | 20 | 40 | 20 | 10 | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com