兩個圓C1x2y2+2x+2y-2=0,C2x2y2-4x-2y+1=0的公切線條數(shù)

[  ]

A.1條

B.2條

C.3條

D.4條

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓C1:x2+y2-10x-6y+32=0,動圓C2:x2+y2-2ax-2(8-a)y+4a+12=0,
(Ⅰ)求證:圓C1、圓C2相交于兩個定點;
(Ⅱ)設(shè)點P是橢圓
x24
+y2=1
上的點,過點P作圓C1的一條切線,切點為T1,過點P作圓C2的一條切線,切點為T2,問:是否存在點P,使無窮多個圓C2,滿足PT1=PT2?如果存在,求出所有這樣的點P;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①已知橢圓
x2
16
+
y2
8
=1
的兩個焦點為F1,F(xiàn)2,則這個橢圓上存在六個不同的點M,使得△F1MF2為直角三角形;
②已知直線l過拋物線y=2x2的焦點,且與這條拋物線交于A,B兩點,則|AB|的最小值為2;
③若過雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個焦點作它的一條漸近線的垂線,垂足為M,O為坐標原點,則|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則這兩個圓恰有2條公切線.
其中正確命題的序號是
 
.(把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓c:x2+(y-1)2=1和圓c1:(x-2)2+(y-1)2=1,現(xiàn)構(gòu)造一系列的圓c2,c3,…,cn,…,使圓cn+1同時與圓cn和圓c相切,并且都與x軸相切.
①寫出圓cn-1的半徑rn-1與圓cn的半徑rn之間關(guān)系式,并求出圓cn的半徑;
②(理科做)設(shè)兩個相鄰圓cn和cn+1的外公切線長為ln,求
limn→∞
(l1+l2+…+ln)

(文科做)求l1+l2+…+ln

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P是直線l:x-y-2=0上的動點,點A,B分別是圓C1:(x+3)2+(y-1)2=4和圓C2:x2+(y-3)2=1上的兩個動點,則|PA|+|PB|的最小值為
73
-3
73
-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①若△ABC三邊為a,b,c,面積為S,內(nèi)切圓的半徑r=
2S
a+b+c
,則由類比推理知四面體ABCD的內(nèi)切球半徑R=
3V
S1+S2+S3+S4
(其中,V為四面體的體積,S1,S2,S3,S4為四個面的面積);
②若回歸直線的斜率估計值是1.23,樣本點的中心為(4,5),則回歸直線方程是
y
=1.23x+0.08
;
③若偶函數(shù)f(x)(x∈R)滿足f(x+2)=f(x),且x∈[0,1]時,f(x)=x,則方程f(x)=log3|x|有3個根.
④若圓C1x2+y2+2x=0,圓C2x2+y2+2y-1=0,則這兩個圓恰有2條公切線.
其中,正確命題的序號是
①②④
①②④
.(把你認為正確命題的序號都填上)

查看答案和解析>>

同步練習冊答案